A protocol for the direct measurement of particle size distribution in concentrated solutions using dynamic light scattering microscopy is presented.
A protocol for measuring polydispersity of concentrated polymer solutions using dynamic light scattering is described. Dynamic light scattering is a technique used to measure the size distribution of polymer solutions or colloidal particles. Although this technique is widely used for the assessment of polymer solutions, it is difficult to measure the particle size in concentrated solutions due to the multiple scattering effect or strong light absorption. Therefore, the concentrated solutions should be diluted before measurement. Implementation of the confocal optical component in a dynamic light scattering microscope1 helps to overcome this barrier. Using such a microscopic system, both transparent and turbid systems can be analyzed under the same experimental setup without a dilution. As a representative example, a size distribution measurement of a temperature-responsive polymer solution was performed. The sizes of the polymer chains in an aqueous solution were several tens of nanometers at a temperature below the lower critical solution temperature (LCST). In contrast, the sizes increased to more than 1.0 µm when above the LCST. This result is consistent with the observation that the solution turned turbid above the LCST.
Particle size is one of the most fundamental properties of colloidal and polymer solutions. Numerous techniques are used to measure the particle size. Particle sizes of 1.0 µm or larger can be measured directly using an optical microscope. For smaller particles, alternative techniques, such as laser diffraction, electron microscopy, or atomic force microscopy, are used2,3. Dynamic light scattering is a commonly-used technique for the measurement of particle size distributions in solutions4. The results obtained using this technique are not derived from images of the particles but from the characteristic time of the fluctuations in scattered light intensity. These fluctuations originate from Brownian motion, which is characterized by a diffusion constant. The size distribution is obtained from the distribution of diffusion constants using the Einstein-Stokes equation. Due to its simplicity, dynamic light scattering is widely used for the routine assessment of solutions, such as paints and food colloids.
Pretreatment is required for most of the techniques used for the particle size measurement of solution samples. In the case of electron microscopy and atomic force microscopy, the sample must be analyzed under vacuum conditions. Therefore, it is difficult to observe the samples in their native forms. Furthermore, for laser diffraction and dynamic light scattering, only diluted samples that are free from multiple scattering and light absorption can be measured. To overcome this difficulty, several new techniques have been proposed for the measurement of dynamic light scattering from undiluted, concentrated solutions, such as cross-correlation spectroscopy5,6, low-coherence dynamic light scattering7,8, diffusing-wave spectroscopy9,10, and differential dynamic microscopy11,12.
We have developed a new apparatus called a dynamic light scattering microscope1. This apparatus enables us to measure turbid samples without dilution by means of a confocal optical system in which multiple scattering is eliminated using a pinhole. However, the measurement procedure and data analysis are slightly more complicated than those of commercially-available instruments. This video explains the measurement procedure and data analysis in detail using the analysis of the temperature-responsive polymer, poly(N-isopropylacrylamide), as an example.
The initial amplitude of the time correlation function heavily depends on the focal point, as shown in Figure 2(a). This seemingly contradicts the fact that the solution is homogeneous (except for the thin layer at the interface)8. This variation in the initial amplitude is attributed to a variation in the amount of reflected light. Partial heterodyne theory16 predicts that the initial amplitude, A, the scattered light Intensity, Is, and the reflected light intensity, Ir, satisfy the following equation1
This equation shows that the larger Ir becomes, the smaller A becomes. Therefore, A is reduced by setting the focal position close to the interface. The apparent diffusion constant DA can be obtained by fitting the time correlation function in the case of monodisperse solutions:
where . Here, n is the refractive index of the solvent (water, 1.33), θ is the scattered angle (180°), and λ is the wavelength of light (514.5 nm). Since we applied backscattering geometry, the value of q is fixed. However, this point is solved by using different wavelengths of light. Please note that any kind of continuous-wave laser source is available to construct the DLS microscope. Thanks to the small irradiated volume, the coherence factor17 is estimated to be more than 0.99 and is negligible. For polydisperse solutions, the distribution function of DA is obtained by the inverse Laplace transformation. Partial heterodyne theory also predicts that DA is not the same as the actual diffusion constant D. These two diffusion constants satisfy the following equation:
The diffusion constant D is converted into the hydrodynamic radius Rh using the Einstein-Stokes equation4. When A = 1, this relationship becomes DA = D. In this case, the data conversion process is the same as that for the common dynamic light scattering. The red line shown in Figure 2(b) corresponds to this case. In contrast, this relationship becomes DA = 0.5D at the limit of A → 0. Therefore, the size is estimated to be twice as large as the actual size when A is small (practically, less than 0.2), as shown by the blue line of Figure 2(b). If we know that A is significantly small, the horizontal axis can be shifted, as shown in Figure 2(c). In principle, we can convert DA into D for any value of A. In practice, however, it is better to set the initial amplitude smaller than 0.2, since the simple approximation DA ∼ 0.5D holds true.
The prominent features of the dynamic light scattering microscope technique were demonstrated using a PNIPA solution. The conformation of PNIPA below and above the LCST has been extensively studied using small-angle neutron scattering15,18. In contrast, dynamic light scattering has not been utilized for the analysis of PNIPA above the LCST because of its turbidity19. This problem is solved by the dynamic light scattering microscope, as shown in Figures 3(a) and (b). The size of these aggregates is several µm, which cannot be obtained by either small-angle X-ray/neutron scattering or conventional light scattering techniques. Time-resolved measurements using this system give information on the aggregation process during the temperature change.
The drawback of the dynamic light scattering microscope is also illustrated in Figure 3. For the result below the LCST, the time correlation function is strongly affected by the very small amount of dust present (the black lines in Figure 3). For example, the time correlation function does not decay completely, even with correlation times in the order of 1.0 s. This is because the volume irradiated with this apparatus (approximately 1.0 µm) is significantly smaller than that irradiated with the usual dynamic light scattering apparatus (approximately 100 µm). In cases where the intensity of scattered light is weak, the signal is obscured by the noise, such as that caused by small amounts of dust in the solution. Therefore, the three peaks shown in Figure 3(b) may not have quantitative importance although the general order of the size is meaningful. Note that such a weak scatterer can be measured by a conventional dynamic light scattering apparatus.
We have demonstrated that the dynamic light scattering microscope enables us to measure both transparent and turbid samples with the same setup. Since the optical path length in the samples is short, this technique can be applied to strong light-absorbing samples, such as carbon nanotube suspensions20. In addition, due to its high spatial resolution, this technique can be applied to biological cells. For its application to biology, this method can also be combined with other imaging techniques, such as fluorescence and Raman imaging. Thus, we believe that the dynamic light scattering microscope is a powerful tool for a wide range of research fields.
The authors have nothing to disclose.
This work has been financially supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (No. 25248027 to M.S.).
N-isopropylacrylamide, 98% | Tokyo Chemical Industry Co., Ltd. | I0401 | |
toluene, 99% | Wako Pure Chemical Industries, Ltd. | 201-01876 | |
petroleum ether, distillation temperature 30 ~ 60 °C | Wako Pure Chemical Industries, Ltd. | 169-22565 | |
N,N,N',N'-tetramethylethylenediamine, 99% | Sigma | T9281 | |
ammonium persulfate, 98% | Sigma | 248614 | |
polystyrene latex suspension, 1 wt% | Duke Scientific Corporation | 3500A | |
argon | Koike Sanso Kogyo Co., Ltd. | purity > 99.999 vol.% | |
cavity slide | Matsunami Glass Ind.,Ltd. | 83-0336 | |
inverted microscope | Nikon Instech Co., Ltd. | ECLIPSE Ti-U | |
Thermo Plate | Tokai Hit CO.,Ltd | TP-108R-C | |
Ar-Kr ion laser | Spectra-Physics | Stabilite 2018 | |
avalanche photodiode | ALV-GmbH | ALV-High Q.E. Avalanche Photo Diode | |
correlator | ALV-GmbH | ALV-5000/EPP |