一种用于使用动态光散射显微镜浓缩溶液的粒度分布的直接测量协议提出。
A protocol for measuring polydispersity of concentrated polymer solutions using dynamic light scattering is described. Dynamic light scattering is a technique used to measure the size distribution of polymer solutions or colloidal particles. Although this technique is widely used for the assessment of polymer solutions, it is difficult to measure the particle size in concentrated solutions due to the multiple scattering effect or strong light absorption. Therefore, the concentrated solutions should be diluted before measurement. Implementation of the confocal optical component in a dynamic light scattering microscope1 helps to overcome this barrier. Using such a microscopic system, both transparent and turbid systems can be analyzed under the same experimental setup without a dilution. As a representative example, a size distribution measurement of a temperature-responsive polymer solution was performed. The sizes of the polymer chains in an aqueous solution were several tens of nanometers at a temperature below the lower critical solution temperature (LCST). In contrast, the sizes increased to more than 1.0 µm when above the LCST. This result is consistent with the observation that the solution turned turbid above the LCST.
Particle size is one of the most fundamental properties of colloidal and polymer solutions. Numerous techniques are used to measure the particle size. Particle sizes of 1.0 µm or larger can be measured directly using an optical microscope. For smaller particles, alternative techniques, such as laser diffraction, electron microscopy, or atomic force microscopy, are used2,3. Dynamic light scattering is a commonly-used technique for the measurement of particle size distributions in solutions4. The results obtained using this technique are not derived from images of the particles but from the characteristic time of the fluctuations in scattered light intensity. These fluctuations originate from Brownian motion, which is characterized by a diffusion constant. The size distribution is obtained from the distribution of diffusion constants using the Einstein-Stokes equation. Due to its simplicity, dynamic light scattering is widely used for the routine assessment of solutions, such as paints and food colloids.
Pretreatment is required for most of the techniques used for the particle size measurement of solution samples. In the case of electron microscopy and atomic force microscopy, the sample must be analyzed under vacuum conditions. Therefore, it is difficult to observe the samples in their native forms. Furthermore, for laser diffraction and dynamic light scattering, only diluted samples that are free from multiple scattering and light absorption can be measured. To overcome this difficulty, several new techniques have been proposed for the measurement of dynamic light scattering from undiluted, concentrated solutions, such as cross-correlation spectroscopy5,6, low-coherence dynamic light scattering7,8, diffusing-wave spectroscopy9,10, and differential dynamic microscopy11,12.
We have developed a new apparatus called a dynamic light scattering microscope1. This apparatus enables us to measure turbid samples without dilution by means of a confocal optical system in which multiple scattering is eliminated using a pinhole. However, the measurement procedure and data analysis are slightly more complicated than those of commercially-available instruments. This video explains the measurement procedure and data analysis in detail using the analysis of the temperature-responsive polymer, poly(N-isopropylacrylamide), as an example.
时间相关函数的初始振幅在很大程度上依赖于焦点, 如图2(a)中 。这看似矛盾的事实,即溶液是均质的(除了在界面处的薄层)8。在最初的振幅的这种变化是由于在反射光的量的变化。偏差理论16预测的初始振幅,A中 ,散射光强度,I s和反射光强度,I R,满足下式1
这个公式表明,I R变得越大,越小A变得。因此,A通过设置靠近接口的焦点位置降低。表观扩散常数D A CAÑ通过在单分散的解决方案的情况下,拟合时间相关函数来获得:
哪里 。这里,n是溶剂(水,1.33)的折射率,θ是散射角(180°),和λ是光(514.5nm的)的波长。因为我们施加散射几何学,q的值是固定的。然而,这点是通过使用不同波长的光解决。请注意,任何类型的连续波激光源的可用来构造对DLS显微镜。由于小照射量,相干因子17估计为0.99以上,是可以忽略不计。对于多分散溶液,由逆拉普拉斯变换获得的D A的分布函数。偏差次eory还预测,D A是不一样的实际扩散常数D。这两个扩散常数满足以下公式:
扩散常数D被转换成使用爱因斯坦-Stokes方程4中的流体动力学半径R H。当A = 1,这种关系变得D A = D。在这种情况下,数据转换过程是相同的,对于共同的动态光散射。在图2(b)中所示的红色线对应于这种情况。与此相反,这种关系变为D A = 0.5 D钮 A的极限→0,因此,大小估计为两倍的实际大小为大时,A是小的(实际上,小于0.2),如图所示由图2(b)的蓝线</s仲>。如果我们知道A是显著小,横轴可以移动, 如图2(c)所示 。原则上,我们可以D A转换成D代表A的任意值。在实践中,然而,最好是设定为比0.2的初始振幅小,由于简单的近似D A〜0.5ð成立。
动态光散射显微镜技术的突出特点是使用PNIPA解决方案演示。 PNIPA的下面和高于LCST构象已经使用小角中子散射15,18被广泛地研究。相比之下,动态光散射尚未用于PNIPA的LCST以上的分析,因为它的浊度19。这个问题是由动态光散射显微镜解决, 如图3(a)和(b)中 。这些聚集体的尺寸为几&#181;米,这不能由任一小角X射线/中子散射或常规的光散射技术获得。使用该系统的时间分辨的测量的温度变化过程中得到的聚集过程的信息。
动态光散射显微镜的缺点也被在图3中示出。为低于LCST的结果,时间相关函数强烈地受到本灰尘的极少量的(黑线在图3中)的影响。例如,该时间相关函数不完全衰减,即使在1.0秒的数量级相关时间。这是因为该装置(约1.0微米)的照射体积比照射与通常的动态光散射装置(大约100微米)显著小。在的情况下的散射光的强度较弱,信号被噪音掩盖,比如导致由s商场的量在溶液中的灰尘。因此,在如图3(b)中所示的三个峰可能不具有定量的重要性虽然尺寸的一般顺序是有意义的。另外,这样的弱散射体可以通过常规的动态光散射装置进行测定。
我们已经证明,在动态光散射显微镜使我们能够用相同的设置测量透明和混浊样本。由于样品中的光路长度短,该技术可以适用于强的光吸收的样品,如碳纳米管悬浮液20。此外,由于其高的空间分辨率,该技术可以适用于生物细胞。其应用到生物学,这种方法也可与其它成像技术,如荧光和拉曼成像相结合。因此,我们认为,在动态光散射显微镜为广泛研究领域的有力工具。
The authors have nothing to disclose.
This work has been financially supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (No. 25248027 to M.S.).
N-isopropylacrylamide, 98% | Tokyo Chemical Industry Co., Ltd. | I0401 | |
toluene, 99% | Wako Pure Chemical Industries, Ltd. | 201-01876 | |
petroleum ether, distillation temperature 30 ~ 60 °C | Wako Pure Chemical Industries, Ltd. | 169-22565 | |
N,N,N',N'-tetramethylethylenediamine, 99% | Sigma | T9281 | |
ammonium persulfate, 98% | Sigma | 248614 | |
polystyrene latex suspension, 1 wt% | Duke Scientific Corporation | 3500A | |
argon | Koike Sanso Kogyo Co., Ltd. | purity > 99.999 vol.% | |
cavity slide | Matsunami Glass Ind.,Ltd. | 83-0336 | |
inverted microscope | Nikon Instech Co., Ltd. | ECLIPSE Ti-U | |
Thermo Plate | Tokai Hit CO.,Ltd | TP-108R-C | |
Ar-Kr ion laser | Spectra-Physics | Stabilite 2018 | |
avalanche photodiode | ALV-GmbH | ALV-High Q.E. Avalanche Photo Diode | |
correlator | ALV-GmbH | ALV-5000/EPP |