Summary

In vivo genoverførsel til Schwann-celler i Rodent iskiasnerven ved elektroporering

Published: September 08, 2016
doi:

Summary

Here, we present an in vivo technique for gene transfer to Schwann cells (SCs) in the rodent sciatic nerve. This simple technique is useful for investigating signaling mechanisms involved in the development and maintenance of myelinating SCs.

Abstract

The formation of the myelin sheath by Schwann cells (SCs) is essential for rapid conduction of nerve impulses along axons in the peripheral nervous system. SC-selective genetic manipulation in living animals is a powerful technique for studying the molecular and cellular mechanisms of SC myelination and demyelination in vivo. While knockout/knockin and transgenic mice are powerful tools for studying SC biology, these methods are costly and time consuming. Viral vector-mediated transgene introduction into the sciatic nerve is a simpler and less laborious method. However, viral methods have limitations, such as toxicity, transgene size constraints, and infectivity restricted to certain developmental stages. Here, we describe a new method that allows selective transfection of myelinating SCs in the rodent sciatic nerve using electroporation. By applying electric pulses to the sciatic nerve at the site of plasmid DNA injection, genes of interest can be easily silenced or overexpressed in SCs in both neonatal and more mature animals. Furthermore, this in vivo electroporation method allows for highly efficient simultaneous expression of multiple transgenes. Our novel technique should enable researchers to efficiently manipulate SC gene expression, and facilitate studies on SC development and function.

Introduction

The rapid transmission of sensory and motor information in the peripheral nervous system is permitted by the myelin sheath, which is formed by myelinating Schwann cells (SCs)1. Insulation of axons by the myelin sheath enables saltatory conduction, which increases the speed of nerve impulses. In disorders in which the development or maintenance of the myelin sheath is impaired, nerve conduction speed is reduced. This results in neuropathy involving motor and sensory dysfunction. Although there are many studies on the molecular mechanisms of myelination and demyelination in the peripheral nervous system, the roles of the numerous proteins involved in these processes remain unclear.

To study the molecular mechanisms of SC myelination/demyelination in vivo, genetic approaches have been used to modify gene expression in animals. A powerful approach is the use of knockout/knockin or transgenic animals. However, the generation of these animals is expensive and time consuming. For SC-specific gene manipulation, crossing floxed strains with Cre mice or other conditional gene expression methods are necessary. This again is laborious and time intensive. In recent years, a cutting-edge genetic technology, the CRISPR-Cas9 system, has made the generation of genetically modified mice much quicker (about 4 weeks)2,3, but this method is hindered by target sequence limitations, and suffers from off-target effects. As an alternative method, viral vector-mediated gene transfer is a faster and easier method of achieving gene transfer into SCs in vivo4-6. Indeed, the generation of viral vectors is less expensive, and takes a shorter time (within a few weeks), and gene manipulation of SCs can be achieved by simply injecting engineered viral vectors, such as adenoviral vectors, adeno-associated viral (AAV) vectors, and lentiviral vectors, into the sciatic nerve. Because these viral vectors have different characteristics, users have to choose the one best suited for their purpose. Adenoviral vectors infect axons and SCs in both young and mature sciatic nerves. In particular, adenoviral vectors have higher selectively for non-myelinating SCs than myelinating SCs. Adenoviruses can cause immune responses, and accordingly, immunodeficient strains should be used5. AAV vectors are currently the most widely used viral vectors, and allow in vivo gene transfer with lower toxicity7. AAV can transduce both axons and SCs by direct injection into the nerve fibers8,9. However, AAV-mediated protein expression usually requires 3 weeks or longer to reach maximum levels7,9. Therefore, it is difficult to analyze myelination, which actively progresses during the two week postnatal period. Lentiviral vectors have higher selectively for myelinating SCs than non-myelinating SCs, and do not have toxic effects on sciatic nerves. However, lentiviral vectors do not infect SCs in more mature nerves5, and therefore are unsuitable for analyzing events such as the demyelination process.

Electroporation is another faster and easier approach to achieve in vivo gene transfer. It has been reported that in vivo transfection of SCs can be achieved when electroporation is applied to transected rat sciatic nerves10. However, because this method requires nerve transection for gene delivery, the application is limited to the analysis of the damaged nerves. Here, we describe an alternative method that allows the delivery of transgenes into myelinating SCs in intact rat sciatic nerves using electroporation11. This method requires plasmid construction, which can usually be completed within a week. Then, by simply delivering electric pulses to the site on the sciatic nerve where the plasmid DNA was injected, highly selective transfection of myelinating SCs can be achieved in neonatal as well as in more mature animals. By electroporating multiple plasmids, simultaneous expression of a variety of genes can be easily achieved. The ability to simultaneous express multiple molecules, such as signaling proteins, short-hairpin RNAs (shRNAs) and functional probes, is crucial for investigating complex processes such as myelination and demyelination. The novel in vivo electroporation method described in this paper will be a powerful tool, allowing researchers to analyze the function of a multitude of molecules and their interactions in myelinating SCs.

Protocol

Brugen af ​​rotter til forskning var i overensstemmelse med retningslinjer fastsat af Animal Welfare Udvalg University of Tokyo. 1.Preparation af plasmid-DNA Generere DNA-plasmider til in vivo elektroporation ved subkloning af cDNA eller shRNA sekvens i et ekspressionsplasmid for mammale celler 12. Brug en cytomegalovirus immediate early enhancer og kylling β-actin-promotor-fusion (CAG) promotor-drevet plasmid 13, fordi det giver en stærk og stabil ekspression. Til ekspression af shRNAs under kontrol af en CAG promotor, brug en mir30-baserede shRNA kassettesystem til subkloning af shRNA 14. Oprense plasmid-DNA med en maxi-prep kit ifølge producentens instruktioner, og resuspender DNA'et med HEPES-bufret saltvand (140 mM NaCl, 0,75 mM Na 2 HPO 4, 25 mM HEPES, pH 7,40). Indstille koncentrationen af ​​DNA til ≥4 pg / pl. <li> Forbered plasmid DNA-opløsningen til en koncentration på 4 pg / pl, og tilføje en minimal mængde fast green farvestof (slutkoncentration på 0,01%) til at mærke injektionsstedet. Når samtidig elektroporering af multiple plasmider er påkrævet, justeres den samlede koncentration af plasmid-DNA'et løsning på 4 pg / pl. Bemærk: Den optimale sammensætning af plasmid-DNA'er skal bestemmes efter transfektionseffektiviteten af ​​hvert plasmid. 2. Sterilisering af kirurgiske instrumenter og Saline Autoklave kirurgiske instrumenter og 0,9% NaCl-opløsning. 3. Forberedelse af Glass Mikropipette Træk glas pipetter ved hjælp af en pipette aftrækker. Skær spidsen af ​​pipetten til en diameter på 30-50 um. Brug følgende parametre: Varme, 600; Velocity, 50; Time, 75. 4. Animal Surgery, DNA Injection og Elektroporation Bemærk: En overbetragtning af dette trin er beskrevet i figur 1. Selv om proceduren for rotteunger er beskrevet her, er fremgangsmåden også anvendelig til mere modne dyr ved anvendelse af samme fremgangsmåde. Anesthetize rotte med isofluran i induktionen kassen, indtil dyret bliver ubevægelig ved at justere ilt flow til 0,4 l / min og isofluran koncentration til 4% (vol / vol). Udfør tå klemme for at bekræfte korrekt bedøvelse. Sæt rotten på den forvarmede varmere under et binokulært mikroskop, og opretholde anæstesi ved løbende administration isofluran gennem ansigtsmaske. Juster ilt flow til 0,2 l / min og isofluran koncentration til 2% (vol / vol). Brug øjendråber at forhindre tørhed i øjne, hvis øjne dyret er åbne. Fastgør benene med kirurgisk tape. Rens huden på den bageste låret med povidon-iod og lave et snit med en skalpel. Bemærk: Shave kirurgiske områder, hvis de kirurgiske områder er dækket med hluft. Eksponere iskiasnerven ved at skabe en åbning mellem quadriceps femoris-musklen og biceps femoris-musklen med synåle. Fugt nerven med 0,9% NaCl-opløsning. Absorbere overskydende vand med fnugfri papir. Sæt bunden af ​​et glas mikropipette på fleksible rør, og fylde passende mængde DNA-opløsning (mindst en mikroliter) i mikropipetten ved forsigtigt at aspirere. Løft den udsatte nerve ved forsigtigt at trække den distale side af nerven ved anvendelse af en nål. Bemærk: Må ikke anvendes spænding til den frækhed at minimere mekanisk belastning. Sæt glasmikropipette ind i den distale site på nerven, og injicere DNA-opløsningen ved at påføre tryk (dvs. ved at blæse i den åbne ende af det fleksible rør). Injicere DNA-opløsning, indtil nerven vises grøn (1 pi maksimum). Fordi hyppig indsættelse af mikropipetten kan beskadige nerven, ikke indsætte mikropipette mere end to gange. Placer en TWEEzer-typen platinelektrode ca. 1-2 mm fra nerven. Udfylde hullet mellem elektroden og nerven med 0,9% NaCl-opløsning. Bemærk: Hold ikke nerve med elektroden for at undgå mekanisk belastning på nerven. Påfør elektriske impulser til injektionsstedet under anvendelse af en elektroporator med elektroden. Efter den første impuls sæt vendes elektroden og anvende en anden puls sæt. Brug følgende parametre: spænding, 50 V; puls varighed, 5 ms; impulsinterval, 100 msek; puls nummer, 4 gange. Rengør elektroporering site med 0,9% NaCl-opløsning. Gentag trin 4,4-4,11 på den kontralaterale iskiasnerven. 5. Post-elektroporation Luk indsnit med cyanoacrylat lim. Efter tørring af limen, rense såret med povidon-jod. Slip hvalp fra ansigtsmaske. Varm hvalpen på en varmere mindst en time for at tillade den at komme sig helt fra bedøvelsen. Do ikke lade hvalpen uden opsyn, indtil det har genvundet tilstrækkelig bevidsthed. Efter inddrivelsen fra anæstesi, returnere hvalpen til moderen rotte. Må ikke returnere hvalpen indtil fuldt tilbagebetalt. 6. Post-kirurgi House de rotteunger i buret indtil udførelse af forsøgene 11 (se eksempler i figur 3). Administrere carprofen (5 mg / kg, ip), et ikke-steroidt anti-inflammatorisk lægemiddel, eller buprenorphin (0,1 mg / kg, sc), et opioidanalgetikum, hvis det kræves. Bemærk: Hvis rotten pup ikke vokser godt eller inflammation observeres omkring operationsstedet, udelukker dyret fra forsøgene.

Representative Results

Et eksempel på en iskiasnerven transficeret med rødt fluorescerende protein (RFP) udtrykkende plasmid er vist i figur 2A. Celler viser bipolar morfologi, en egenskab ved SC'er, blev sparsomt transficeret med RFP. Nr RFP fluorescens blev påvist i axoner. Vi plejer at finde ~ 100 transfekterede SCs i hver nerve. Denne transfektionseffektiviteten synes ligner in vivo SC infektionseffektivitet hjælp lentivirusvektorer 4. Immunofarvning eksperimenter viste, at de fleste (~ 96%) RFP-positive celler på P7 co-mærket til S100, en SC markør (figur 2B), og 91% af RFP-positive celler ved P14 co-mærket til MBP, en myelinerende SC markør (Figur 2C), hvilket antyder, at genoverførsel ved elektroporering er stærkt selektiv for myelinerende SC'er. Indførelsen af ​​adskillige gener i SC'er <em> in vivo vil være yderst nyttigt for at undersøge mekanismerne i myelinering / demyelinisering. En stor fordel af in vivo elektroporation her beskrevne fremgangsmåde er evnen til at overføre multiple gener med en enkel procedure. Figur 2D viser et repræsentativt billede af en iskiasnerven transficeret med en blanding af GFP og RFP-udtrykkende plasmider under anvendelse af in vivo elektroporation. Omkring 97% af SCs var GFP og RFP dobbelt positive, hvilket tyder på, at meget effektiv tilførsel af multiple gener kan opnås ved blot at elektroporering af blandinger af flere plasmider. Hos gnavere myelinering indleder omkring fødslen, dramatisk stigende i løbet af de første to uger efter fødslen, og derefter gradvist aftager. Således ved genetisk manipulation af SCs i disse udviklingsmæssige tidsvinduer, mekanismerne bag disse forskellige stadier af myelinering kan afklares. Lentivirale vektorer er et godt redskab til ennalyzing myelinering, især da de har minimal toksicitet, men lentivira kun inficere neonatal ischiadicus nerver 5,6. Til sammenligning elektroporation genoverførsel fungerer godt, når transfektion udføres på P3 (figur 2E, top) eller på P14 (figur 2E, bottom). De anvendelser af romanen in vivo elektroporation metode er beskrevet her. Figur 3A viser lys mikroskopiske billeder af GFP-udtrykkende myelinerende SCs på forskellige udviklingsstadier (P7, P14, P21 og P31). Ved lysmikroskopisk analyse, ændringer i morfologiske parametre såsom længde og diameter, kan vurderes. Bemærk, at disse parametre har lignende værdier i forhold til intakt rotte perifere nerver 15,16, hvilket tyder på, at de elektroporerede nerverne udvikler uden væsentlige skadevirkninger. Figur 3B viser et elektronmikroskopisk billede af LacZ-EXPREssing myelinerende SC'er. I dette tilfælde blev LacZ anvendt som udtryk markør. β-galactosidase-farvning under anvendelse af Bluo-gal, en ethanol-uopløselige substrat, muliggør analysen af myelin struktur af transficerede SC'er ved elektronmikroskopi 11,17. I disse eksperimenter kan rolle signalmolekyler undersøges af tavshed eller forstærke deres udtryk, hvorved analysen af ​​tab af funktion eller få af funktion effekter. Ud over analysen af fikseret væv, kan in vivo elektroporation genoverførsel også anvendes til at leve billeddannelse eksperimenter. For eksempel figur 3C viser en myelinerende SC co-udtrykkende G-GECO1.1 18, et grønt fluorescerende cytosolisk Ca2 + indikator, og R-GECO1mt 19, et rødt fluorescerende mitochondrial Ca2 + indikator. Ved at udtrykke disse indikatorer, vi identificeret en signalvejen, der styrer cytosol og mitokondrie Ca 2+ koncentrationen i myelinerende SCs . Således kan den foreliggende fremgangsmåde anvendes til at studere en række signaling mekanismer, især når genetisk indkodede fluorescerende prober er tilgængelige til at detektere signalerne af interesse. Figur 1:. Skematisk af I N vivo Elektroporation Metode Først iskiasnerven af den bedøvede rotte udsættes. Sekund, plasmid-DNA injiceret i iskiasnerven. Tredje, elektriske impulser leveres til injektionsstedet gennem tang-formede elektrode. Endelig er såret lukkes med lim. Denne procedure kan gentages på den kontralaterale nerve. Klik her for at se en større version af dette tal. "> Figur 2: Repræsentative resultater på Transficerede iskiasnerver (A) Et repræsentativt billede af en transficeret iskiasnerven.. Nerven blev transficeret med RFP-udtrykkende plasmid på P3, og fastsat til P7. (B) Et repræsentativt billede af en RFP-transficerede celle ved P7 viser colokalisering med S100, en SC markør. (C) Et repræsentativt billede af en RFP-transficerede iskiasnerven på P14 viser colokalisering med MBP, en myelinerende SC markør. (D) Et repræsentativt billede af en iskiasnerven cotransficeret med GFP og RFP-udtrykkende plasmider. Transfekterede SCs samtidigt udtrykte GFP og RFP. (E) Et billede af myelinerende SC'er på P31 transficerede på P3, når myelinering begynder (top), og et billede af myelinerende SC'er på P31 transficeret ved P14, når de fleste store axoner bliver myelinerede (nederst), hvilket antyder, at transffdeling af myelinerende SC'er kan opnås ikke kun i neonatale nerver, men også i mere modne nerver. Scale barer = 200 um (A); 50 um (BE). Dette tal blev ændret fra vores tidligere publikation 11. Klik her for at se en større version af dette tal. Figur 3: Anvendelse af in vivo Elektroporation (A) En let mikroskopisk analyse af udviklingen af myelinerende SCs.. Ischiadicus nerver blev elektroporeret med GFP-udtrykkende plasmid på P3, og blev fastsat på forskellige udviklingsstadier (P7, P14, P21 og P31). Repræsentative billeder af GFP-positive SCs er vist til venstre. Den gennemsnitlige længde og diameter er opsummeret som gennemsnit ± SEM (n = 30-47 fra 3 nerver) til højre. Længde og diameter af myelinerende SCS stiger som udviklings- skrider frem. (B) Et elektronmikroskopisk billede af en iskiasnerven transficeret med et plasmid kodende for LacZ. En transficeret SC (hvid asterisk, venstre) blev fint mærket med præcipitater af den β-galactosidase reaktionsprodukt. (C) Et billede af et SC cotransficeret med G-GECO1.1, et grønt fluorescerende cytosolisk Ca2 + indikator, og R-GECO1mt, et rødt fluorescerende mitochondrial Ca2 + indikator. Regionerne i de hvide stiplede rektangler vises forstørret i panelerne til højre. Scale barer = 50 um (A og C); 1 um (B). Dette tal blev ændret fra vores tidligere publikation 11. Klik her for at se en større version af dette tal.

Discussion

In this paper, we describe a simple and efficient method that allows in vivo gene transfer to myelinating SCs in the rat sciatic nerve using electroporation. This method allows highly selective gene expression in myelinating SCs by simply applying electric pulses to the plasmid DNA-injected sciatic nerve. Because the molecular mechanisms of myelination and demyelination in the peripheral nervous system remain unclear, the present in vivo electroporation method will be a powerful tool to clarify the roles of multiple genes of interest in living animals.

A critical requirement of this method is to keep damage to the nerve during surgery to a minimal level. Should surgical damage cause excessive inflammation, the sciatic nerve may degenerate. To avoid this, one must conduct surgery with extreme care, so as to not damage the blood vessels around the nerve. Mechanical stress to the nerve during the surgery can also be a cause of nerve damage. To minimize mechanical stress, lifting the exposed nerve should be done as gently as possible, and the tweezer-type electrode should be placed close to the nerve without contact. Furthermore, electrical pulses that are too strong can cause undesirable large leg movement, which leads to mechanical stress, or can burn the nerve. If significant damages are observed in the nerves, we recommend reducing the electrical pulse intensities or placing the electrode further away from the nerve.

In our present protocol, CAG promoter-driven plasmids were used as expression vectors. CAG promoter-driven plasmids allow high levels of gene expression in myelinating SCs in vivo. We also have tried a CMV promoter, another widely used universal promoter for mammalian gene expression, but expression of the gene product was very weak. This is consistent with previous results, in which electroporation-mediated transfection was conducted in the embryonic brain20. Therefore, we recommend using CAG promoter-driven plasmids for the in vivo electroporation method.

Because axonal signaling is a key factor in myelination/demyelination21, gene modification in neurons is also important. However, delivery of transgenes using our in vivo electroporation method is limited to SCs. It has been reported that gene delivery into sciatic nerve axons can be achieved when in vivo electroporation is applied to dorsal root ganglion (DRG) neurons in adult rats22. This suggests that delivery of plasmid DNA to the cell body is likely to be critical for in vivo transfection of peripheral axons. Thus, to examine the involvement of axonal molecules in myelination/demyelination, researchers should use neuron-specific genetic methods such as genetically modified animals, neuron-specific viral vectors, or in vivo electroporation to DRG neurons.

Compared with current methods, such as the generation of genetically modified animal lines23 and delivery of transgenes by viral vectors4-6, gene modification of SCs by in vivo electroporation is simpler. This method only requires several days for plasmid DNA construction and one day for electroporation surgery. Plasmid DNA construction does not require a biohazard room that is usually essential for viral vector handling. In addition, one of the advantages of the electroporation method is the capacity for simultaneous expression of multiple gene products using a simple protocol. Our novel technique will be useful for analyzing the interaction of a variety of signaling molecules involved in myelination and demyelination. In particular, by permitting the cotransfection of a number of different intracellular fluorescent probes, our method should be a powerful tool for investigating intracellular signaling dynamics in SCs using live imaging experiments.

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology to M.I. (21229004 and 25221304).

Materials

Genopure Plasmid Maxi Kit Roche 03 143 422 001 Plasmid DNA purification kit
Fast Green CFC WAKO 069-00032 Dye for DNA injection
GC 150T-10 HARVARD APPARATUS 30-0062 Glass capillary
Suction tubing Drummond 05-2000-00 Suction tubing for micro injection
MODEL P-97 SUTTER INSTRUMENT CO. Micropipette puller
CUY21 Single Cell BEX Electroporator CUY21 Single Cell Pulse generator
Electric warmer KODEN CAH-6A Warmer during the surgery
Isofluolane Mylan 1119701G1076 Anesthetic

Referências

  1. Nave, K. A., Werner, H. B. Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol. 30, 503-533 (2014).
  2. Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153, 910-918 (2013).
  3. Yang, H., Wang, H., Jaenisch, R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc. 9, 1956-1968 (2014).
  4. Cotter, L., et al. Dlg1-PTEN interaction regulates myelin thickness to prevent damaging peripheral nerve overmyelination. Science. 328, 1415-1418 (2010).
  5. Gonzalez, S., Fernando, R. N., Perrin-Tricaud, C., Tricaud, N. In vivo introduction of transgenes into mouse sciatic nerve cells in situ using viral vectors. Nat Protoc. 9, 1160-1169 (2014).
  6. Ozcelik, M., et al. Pals1 is a major regulator of the epithelial-like polarization and the extension of the myelin sheath in peripheral nerves. J Neurosci. 30, 4120-4131 (2010).
  7. Daya, S., Berns, K. I. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 21, 583-593 (2008).
  8. Glatzel, M., et al. Adenoviral and adeno-associated viral transfer of genes to the peripheral nervous system. Proc Natl Acad Sci U S A. 97, 442-447 (2000).
  9. Homs, J., et al. Schwann cell targeting via intrasciatic injection of AAV8 as gene therapy strategy for peripheral nerve regeneration. Gene Ther. 18, 622-630 (2011).
  10. Aspalter, M., et al. Modification of Schwann cell gene expression by electroporation in vivo. J Neurosci Methods. 176, 96-103 (2009).
  11. Ino, D., et al. Neuronal Regulation of Schwann Cell Mitochondrial Ca(2+) Signaling during Myelination. Cell Rep. 12, 1951-1959 (2015).
  12. Struhl, K. Chapter 3; Subcloning of DNA fragments. Curr Protoc Mol Biol. , Unit3 16 (2001).
  13. Niwa, H., Yamamura, K., Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 108, 193-199 (1991).
  14. Chang, K., Elledge, S. J., Hannon, G. J. Lessons from Nature: microRNA-based shRNA libraries. Nat Methods. 3, 707-714 (2006).
  15. Schlaepfer, W. W., Myers, F. K. Relationship of myelin internode elongation and growth in the rat sural nerve. J Comp Neurol. 147, 255-266 (1973).
  16. Webster, H. D. The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerves. J Cell Biol. 48, 348-367 (1971).
  17. Weis, J., Fine, S. M., David, C., Savarirayan, S., Sanes, J. R. Integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions. J Cell Biol. 113, 1385-1397 (1991).
  18. Zhao, Y., et al. An expanded palette of genetically encoded Ca(2)(+) indicators. Science. 333 (2), 1888-1891 (2011).
  19. Suzuki, J., et al. Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun. 5, 4153 (2014).
  20. Tabata, H., Nakajima, K. Labeling embryonic mouse central nervous system cells by in utero electroporation. Dev Growth Differ. 50, 507-511 (2008).
  21. Taveggia, C., Feltri, M. L., Wrabetz, L. Signals to promote myelin formation and repair. Nat Rev Neurol. 6, 276-287 (2010).
  22. Saijilafu, E. M., Hur, F. Q., Zhou, Genetic dissection of axon regeneration via in vivo electroporation of adult mouse sensory neurons. Nat Commun. 2, 543 (2011).
  23. Tanaka, Y., Hirokawa, N. Mouse models of Charcot-Marie-Tooth disease. Trends Genet. 18, S39-S44 (2002).
check_url/pt/54567?article_type=t

Play Video

Citar este artigo
Ino, D., Iino, M. In Vivo Gene Transfer to Schwann Cells in the Rodent Sciatic Nerve by Electroporation. J. Vis. Exp. (115), e54567, doi:10.3791/54567 (2016).

View Video