Ein modifiziertes Protokoll zur Ploidie Manipulation verwendet einen Hitzeschock eine Ein-Zyklus-Stall in cytokinesis im frühen Embryo zu induzieren. Dieses Protokoll wird in dem Zebrafisch gezeigt, sondern kann auf andere Arten anwendbar.
Manipulation von Ploidie ermöglicht nützliche Umwandlungen, wie Diploide zu tetraploiden oder Haploiden zu diploiden. Im Zebrabärblingen, insbesondere die Erzeugung von homozygot gynogenetischen diploiden ist in der genetischen Analyse nützlich , weil sie die direkte Herstellung von Homozygoten aus einer einzigen heterozygot Mutter erlaubt. Dieser Artikel beschreibt ein modifiziertes Protokoll für die Duplizierung Ploidie basierend auf einem Wärmeimpuls während des ersten Zellzyklus, Heat Shock 2 (HS2). Durch Hemmung der centriole Vervielfältigung führt dieses Verfahren in einer präzisen Zellteilung Stand während des zweiten Zellzyklus. Die genaue Ein-Zyklus-Teilung Stall, gekoppelt unbeeinflusst DNA Vervielfältigung, ergibt sich ganze Genomduplikation. Protokolle mit diesem Verfahren verbunden sind Ei- und Samensammlung, UV – Behandlung von Spermien, de – vitro – Fertilisation und Wärmeimpuls eine Ein-Zellzyklus – Abteilung Verzögerung und Ploidie Doppelarbeit zu verursachen. Eine modifizierte Version dieses Protokolls könnte angewendet werdenPloidie Veränderungen in anderen Tierarten zu induzieren.
Dieses Protokoll ermöglicht die Manipulation von Ploidie in Zebrabärbling – Embryonen, beispielsweise bei der Erzeugung von homozygoten gynogenetischen Diploiden von gynogenetischen Haploiden (Abbildung 1) oder die Herstellung von tetraploiden. Dies wird durch Induzieren einer Verzögerung in Zytokinese erreicht genau einem Zellenzyklus entspricht (2A, 2B). Der Schlüssel von einem Zyklus Verzögerung in cytokinesis wird durch Behandlung mit Hitzeschock erreicht. Das Standardprotokoll von Hitzeschock (HS) , wie ursprünglich von Streisinger und Kollegen beteiligt einen Temperaturimpuls während des Zeitraums 13-15 MPF, was zu einer Ein-Zyklus der Zellteilung Strömungsabriß während des ersten Zellzyklus – 1. Die Effizienz dieses Protokolls wurde durch Scannen der frühen Zellzyklen mit einem gleitenden Zeitfenster von Hitzeschockbehandlung vor kurzem verbessert. Dieser Scan einen späteren Zeitpunkt für einen Wärmeschock, noch innerhalb des ersten Zellzyklus (22-24 MPF), die zu einer höheren Rate von embr identifiziertenYos mit einem Zellteilungsströmungsabriß one-Zyklus, der in diesem Fall 2 mit der zweiten Zellzyklus wirkt. Die Beobachtung , dass experimentelle Manipulationen während des ersten Zyklus Zelle mit der Zellteilung in der zweiten Zellzyklus stören und DNA – Gehalt Vervielfältigung verursachen wurde auch bei anderen Fischarten 3,4 berichtet worden. Wir bezeichnen diese modifizierten Protokoll als Heat Shock 2 (HS2 – der Begriff "2" anzeigt, dass der Wärmeimpuls zu einem späteren Zeitpunkt erfolgt als die Standard HS-Methode, und dass der Zellzyklus-Verzögerung durch HS2 tritt während der zweiten Zellzyklus ). Diese Studien zeigten, dass die Grundlage für die Cytokinese Verhaftung nach Hitzeschock ist die Hemmung der centriole Duplizierung während des Wärmeimpulses, der Spindelbildung und Furche Induktions in der folgenden Zellzyklus wirkt. HS2 Ergebnisse in Ausbeuten von Arrest des Zellzyklus 100% nähert, und die Sätze der Ploidie Vervielfältigung bis zu 4 – mal höher als Standard HS 2.
Die Embryonen behandelt Witzha Hitzeschock während Blastomere Zellzyklus viele schädliche Wirkungen zeigen, was darauf hindeutet , dass die Hitzeschock wirkt sich für die Zellteilung 2 mehrere Prozesse erforderlich. Auf der anderen Seite, wenn die Hitzeschock vor der Einleitung des Zellzyklus (Zeitraum 0-30 MPF) angewendet wird, scheint es , Auswirkungen im Einklang mit spezifischen Störungen centriole Doppelarbeit zu haben und scheint nicht andere wesentliche Zellprozesse 2 zu beeinflussen . Diese Studien zeigten, dass die Zeit vor dem Beginn der Blastomere Teilung wird eine Entwicklungsperiode zugänglich Verwendung Heat Shock als Werkzeug zu sein, um spezifisch Ploidie durch centriole Hemmung manipulieren. Die zugrunde liegende Ursache der scheinbaren Selektivität für Hitzeschock auf centriole Vervielfältigung ist nicht bekannt, kann aber auf einen selektiven Abbau von Zentrosomen Substrukturen beobachtet unter Hitzestress in bestimmten Zelltypen, wie beispielsweise Leukozyten 5 bezogen werden.
Die zeitliche Synchronisation der embryonalen dewicklung wird durch In-vitro-Fertilisation (IVF) erreicht. Verwendung von unbehandeltem Sperma bei der Befruchtung führt zu diploiden Embryonen, die auf einem Zyklus cytokinesis Stall werden tetraploiden HS2-induziert. Die Verwendung von UV-behandelten Spermien, die Vernetzungen trägt, die ihre DNA zu inaktivieren, die Ergebnisse in gynogenetischen haploiden Embryonen 6, die auf einem Zyklus cytokinesis Stall gynogenetischen diploiden 2 werden-HSII induziert. Aufgrund der daraus resultierenden ganze Genomduplikation sind die letzteren gynogenetischen diploiden über das Genom in jedem einzelnen Locus homozygot. Für Prägnanz verweisen wir haploiden Embryonen als "Haploiden", und homozygote gynogenetischen diploiden Embryonen als "homozygot diploiden" zu gynogenetischen. Wenn lebensfähige und fruchtbare können homozygot diploiden verwendet werden steril und tödlich freien Linien zu initiieren. Direkte homozygosity induziert durch HS2 sollte auch leicht in die genetische Analyse oder genetischen Screens eingebaut werden, da homozygot diploiden von Weibchen, die heterozygote Träger von mut sindtionen zeigen Raten von Homozygotie bei hohen und festen (50%) -Verhältnisse 2.
Das folgende Protokoll beschreibt Schritte HS2 auszuführen und Ploidie Vervielfältigung mit voller homozygosity induzieren. Für tetraploiden Produktion sollte Spermien Lösung unbehandelt sein. Für homozygote diploiden Produktion, Sperma sollte durch UV-Behandlung inaktiviert werden. Darüber hinaus können auch Identifizierung von homozygoten diploiden verwendet werden, wie in der Diskussion, sichtbaren Pigmentmarkern beschrieben zu erleichtern. Zebrabärbling Kumpel in erster Linie während der ersten 3 Stunden nach Einleitung ihrer Licht – Zyklus 7 und Erwachsene und Eier sind empfindlich auf zirkadianen Rhythmen 8, so dass für die besten Ergebnisse der IVF – Verfahren innerhalb dieser Frist erfolgen soll.
Kritische Schritte
Es ist wichtig, unter den Bedingungen einer wirksamen in-vitro-Fertilisation zu arbeiten. Um eine gute Versorgung mit reifen Eier (Schritt 1) zu gewährleisten, Frauen setzen für die Paarung sollte nicht wurden in Paarungs Kreuze für mindestens 5 Tage festgelegt und sollte gravide erscheinen. Während Unterbrechung der Zucht, kann ein Beobachter 15-30 Tanks ausreichend für das erste Auftreten von natürlichen Ei Extrusion überwachen. Unterbrechung der Paarung sollte…
The authors have nothing to disclose.
This work was supported by NIH grants R21 HD068949-01 and RO1 GM065303.
Zebrafish mating boxes | Aqua Schwarz | SpawningBox1 | |
NaCl | Sigma | S5886 | |
KCl | Sigma | P5405 | |
Na2HPO4 | Sigma | S3264 | |
KH2PO4 | Sigma | P9791 | |
CaCl2 | Sigma | C7902 | |
MgSO4-7H2O | Sigma | 63138 | |
NaHCO3 | Sigma | S5761 | |
Tricaine | Western Chemical | Tricaine-D (MS 222) | FDA approved (ANADA 200-226) |
Tris base | Sigma | 77-86-1 | to prepare 1 M Tris pH 9.0 |
HCl | Sigma | 920-1 | to prepare 1 M Tris pH 9.0 |
Fish net (fine mesh) (4-5 in) | PennPlax | (ThatFishThatPlace # 212370) | available in ThatFishThatPlace |
Plastic spoon | available in most standard stores | ||
Dissecting scissors | Fine Science Tools | 14091-09 | |
Dissecting forceps | Dumont | SS | available from Fine Science Tools |
Dissecting stereoscope (with transmitted light source) | Nikon | SMZ645 | or equivalent |
Reflective light source (LED arms) | Fostec | KL1600 LED | or equivalent |
Petri plates 10 cm diameter | any maker | ||
Eppendorf tubes 1.5 ml | any maker | ||
Ice bucket | any maker | ||
Pipetteman P-1000 | any maker | ||
Pipette tips 1000 µl | any maker | ||
Narrow spatula | Fisher | 14-374 | |
Depression glass plate | Corning Inc | 722085 (Fisher cat. No 13-748B) | available from Fisher Scientific |
UV lamp | UVP | Model XX-15 (cat No. UVP18006201) | available from Fisher Scientific. Although not observed by us with this model, some UV sources have been observed to experience a decrease of intensity over time (if this is the case, see Modifications and Troubleshooting) |
UV glasses | any maker | ||
Paper towels | any maker | ||
Kimwipes | Kimberly-Clark | 06-666-11 | available from Fisher Scientific |
Timer stop watch | any maker | ||
Wash bottle | Thermo Scientific | 24020500 | available from Fisher Scientific |
Tea strainer | available in kitchen stores | ||
beakers, 250 ml (2) | Corning Inc. | 1000250 | available from Fisher Scientific |
water bath (2) | any maker, with accurary to 0.1 C (e.g. Shel Lab H2O Bath Series) | ||
Hanks’ Solution 1 | see above | see above | 8.0g NaCl, 0.4g KCl in 100ml ddH2O. Store at 4°C. |
Hanks’ Solution 2 | see above | see above | 0.358g Anhydrous Na2HPO4, 0.6g KH2PO4 in 100ml ddH2O. Store at 4°C. |
Hanks’ Solution 4 | see above | see above | 0.72g CaCl2 in 50ml ddH2O. Store at 4°C. |
Hanks’ Solution 5 | see above | see above | 1.23g MgSO4 ∙ 7H2O in 50ml ddH2O. Store at 4°C. |
Hank's Premix | see above | see above | add, in the following order: 10.0 ml Solution 1; 1.0 ml Solution 2; 1.0 ml Solution 4; 86.0 ml ddH2O; 1.0 ml Solution 5. Store at 4°C |
Hanks’ Solution 6 | see above | see above | 0.33g NaHCO3 in 10ml ddH2O. Prepare fresh the morning of the IVF procedure. |
Hank's Solution (final solution) | see above | see above | Combine 990ul of Hank’s Premix and 10ul of freshly made Solution 6 (NaHCO3 solution) |