RNA-protein interactions lie at the heart of many cellular processes. Here, we describe an in vivo method to isolate specific RNA and identify novel proteins that are associated with it. This could shed new light on how RNAs are regulated in the cell.
RNA-binding proteins (RBPs) play important roles in every aspect of RNA metabolism and regulation. Their identification is a major challenge in modern biology. Only a few in vitro and in vivo methods enable the identification of RBPs associated with a particular target mRNA. However, their main limitations are the identification of RBPs in a non-cellular environment (in vitro) or the low efficiency isolation of RNA of interest (in vivo). An RNA-binding protein purification and identification (RaPID) methodology was designed to overcome these limitations in yeast and enable efficient isolation of proteins that are associated in vivo. To achieve this, the RNA of interest is tagged with MS2 loops, and co-expressed with a fusion protein of an MS2-binding protein and a streptavidin-binding protein (SBP). Cells are then subjected to crosslinking and lysed, and complexes are isolated through streptavidin beads. The proteins that co-purify with the tagged RNA can then be determined by mass spectrometry. We recently used this protocol to identify novel proteins associated with the ER-associated PMP1 mRNA. Here, we provide a detailed protocol of RaPID, and discuss some of its limitations and advantages.
Proteínas de unión a ARN (prácticas comerciales restrictivas) representan aproximadamente el 10% de S. proteínas cerevisiae 1,2 y aproximadamente el 15% de las proteínas de mamíferos 3-5. Ellos están implicados en muchos procesos celulares, tales como el procesamiento del mRNA post-transcripcional y regulación, la traducción, la biogénesis de ribosomas, ARNt y aminoacilación modificación, remodelación de la cromatina, y mucho más. Un subgrupo importante de las prácticas comerciales restrictivas son las proteínas de unión a ARNm (6,7 mRNPs). En el curso de la maduración del ARNm, diferentes prácticas comerciales restrictivas se unen la transcripción y median su procesamiento nuclear, la exportación fuera del núcleo, localización celular, la traducción y la degradación de 6-8. Por lo tanto, el conjunto distinto de las prácticas comerciales restrictivas unidos a una transcripción en particular en cualquier punto de tiempo determina su procesamiento y en última instancia su destino.
La identificación de las prácticas comerciales restrictivas asociadas con un ARNm podría mejorar significativamente nuestra comprensión de los procesos que subyacen a su regulación post-transcripcional. diversa genética, Métodos microscópicos, bioquímicos y bioinformática se han utilizado para identificar proteínas implicadas en la regulación del mRNA (revisado en 9-11). Sin embargo, sólo unos pocos de estos métodos permiten la identificación de proteínas asociadas con un ARNm diana particular. Es de destacar el sistema híbrido de levadura Tres (Y3H), que utiliza el ARNm de interés como cebo para cribar una biblioteca de expresión en células de levadura. Los clones positivos se observan generalmente a través de una expresión de selección de crecimiento o reportero 12-14. La ventaja clave de este método es el gran número de proteínas que se pueden escanear en un ambiente celular y la capacidad de medir la fuerza de la interacción de ARN-proteína. Las desventajas incluyen la relativamente gran número de resultados falsos positivos debido a la unión no específica, y el alto potencial de resultados falsos negativos debido, en parte, a un mal plegamiento de la proteína de fusión de la presa o el ARN cebo.
Una alternativa al enfoque genético es purifi afinidadcación de ARN con sus proteínas asociadas. Poli A que contiene ARNm se puede aislar mediante el uso de oligo dT columnas, y sus proteínas asociadas son detectados por espectrometría de masas. La interacción ARN-proteína se conserva en su contexto celular mediante reticulación, lo que hace que los enlaces covalentes de corto alcance. El uso de la columna de oligo dT da una visión global de todo el proteoma que está asociado con cualquier poli A que contiene ARNm 3,5,15. Sin embargo, esto no proporciona una lista de proteínas que están asociadas con un ARNm particular. Muy pocos métodos disponibles para llevar a cabo tal identificación. El método PAIR implica la transfección de ácido nucleico con la complementariedad con el ARNm diana 16,17. El ácido nucleico también se une a un péptido, que permite la reticulación de las prácticas comerciales restrictivas en las cercanías de la sitio de interacción. Después de la reticulación, el ácido RBP-péptido-nucleico puede ser aislado y sometido a análisis de la proteómica. Recientemente, una metodología basada en el aptámero estabaaplicado con éxito a extractos de líneas celulares de mamíferos 18. Un aptámero de ARN con afinidad mejorada a la estreptavidina se desarrolló y se fusiona a una secuencia de interés (elemento AU-rico (ARE) en este caso). El ARN aptamer-ARE se une a perlas de estreptavidina y se mezcla con lisado de células. Las proteínas que asocian con la secuencia ARE se purificaron y se identifican por espectrometría de masas (MS). Aunque este método detecta asociaciones que se producen fuera de los ajustes celulares (es decir, in vitro), es probable que ser modificado en el futuro con el fin de introducir los aptámeros en el genoma y por lo tanto permitir el aislamiento de proteínas asociadas con el ARNm mientras que en el medio celular (es decir, in vivo). En la levadura, donde las manipulaciones genéticas están bien establecidos, el método rápido (desarrollado en el laboratorio del Prof. Jeff Gerst) proporciona una visión de las asociaciones in vivo 19. RaPID combina la MS2- específico y fuerte unión de la proteína de cubierta de MS2 (CP) a la secuencia de ARN MS2, y del dominio de unión a estreptavidina (SBP) a la estreptavidina perlas conjugadas. Esto permite la purificación eficiente de mRNAs etiquetados-MS2 a través de perlas de estreptavidina. Además, la expresión de 12 copias de bucles de MS2 permite que hasta seis MS2 CPs de unirse simultáneamente a la ARN y aumentar la eficiencia de su aislamiento. Por lo tanto, este protocolo se sugirió que permita la identificación de nuevas proteínas de ARNm-asociado una vez que las muestras eluidas se sometieron a análisis por espectrometría de masas proteómica.
Recientemente hemos utilizado RaPID para identificar nuevas proteínas asociadas con la levadura ARNm pMP1 20. PMP1 ARNm se había demostrado que se asocia con la membrana del RE y fue encontrado su región 3 'no traducida (UTR) ser un determinante importante en esta asociación 21. Por lo tanto, las prácticas comerciales restrictivas que se unen pMP1 3 'UTR es probable que desempeñen un papel importante en su localización. Rápida seguida de cromatógrafo de líquidosy-espectrometría de masas / espectrometría de masas (LC-MS / MS) dio lugar a la identificación de muchos nuevas proteínas que interactúan con pMP1 20. En esto, proporcionamos un protocolo detallado de la metodología RaPID, controles importantes que hay que hacer, y sugerencias técnicas que pueden mejorar el rendimiento y la especificidad.
Varios métodos utilizan el aislamiento de ARNm específicos para identificar sus proteínas asociadas 11,34 35. Estos métodos se aplican in vitro y in vivo en estrategias para sondear las interacciones ARN-proteína. Los procedimientos in vitro Incubar exógenamente transcritos de ARN con lisado celular para capturar las prácticas comerciales restrictivas y aislar los complejos de RNP 36,37. Un enfoque eficaz de este tipo fue presentado recientement…
The authors have nothing to disclose.
Agradecemos al Prof. Jeff Gerst y Boris Slobodin por sus útiles consejos para configurar el protocolo rápido y proporcionando los plásmidos necesarios. También agradecemos al Dr. Abigail Atir-Lande por su ayuda en el establecimiento de este protocolo y el Dr. Tamar Ziv del Centro de Proteómica Smoler por su ayuda en el análisis LC-MS / MS. Agradecemos al Prof. TG Kinzy (Rutgers) para el anticuerpo YEF3. Este trabajo fue apoyado por el subsidio 2011013 de la Fundación Binacional de Ciencia.
Tris | sigma | T1503 | |
SDS | bio-lab | 1981232300 | |
DTT | sigma | D9779 | |
Acidic Phenol (pH 4.3) | sigma | P4682 | |
Acidic Phenol: Chloroform (5:1, pH 4.3) | sigma | P1944 | |
Chloroform | bio-lab | 3080521 | |
Formaldehyde | Frutarom | 5551820 | |
Glycine | sigma | G7126 | |
NP-40 | Calbiochem | 492016 | |
Heparin | Sigma | H3393 | |
Phenylmethylsulfonyl Flouride (PMSF) | Sigma | P7626 | |
Leupeptin | Sigma | L2884 | |
Aprotinin | Sigma | A1153 | |
Soybean Trypsin Inhibitor | Sigma | T9003 | |
Pepstatin | Sigma | P5318 | |
DNase I | Promega | M610A | |
Ribonuclease Inhibitor | Takara | 2313A | |
Glass Beads | Sartorius | BBI-8541701 | 0.4-0.6mm diameter |
Mini BeadBeater | BioSpec | Mini BeadBeater 16 | |
Guanidinium | Sigma | G4505 | |
Avidin | Sigma | A9275 | |
Streptavidin Beads | GE Healthcare | 17-5113-01 | |
Bovine serum albumin (BSA) | Sigma | A7906 | |
Yeast tRNA | Sigma | R8508 | |
Biotin | Sigma | B4501 | |
Yeast extract | Bacto | 288620 | |
peptone | Bacto | 211677 | |
Glucose | Sigma | G8270 | |
1 x Phosphate-Buffered saline (PBS) | |||
0.2 M NaOH | |||
4 x Laemmli Sample Buffer (LSB) | 0.2 M Tris-Hcl pH 6.8, 8% SDS, 0.4 M DTT, 40% glycerol, 0.04% Bromophenol-Blue. | ||
Hot phenol lysis buffer | 10 mM Tris pH 7.5, 10 mM EDTA, 0.5% SDS | ||
3 M Sodium Acetate pH 5.2 | |||
100% and 70% Ethanol (EtOH) | |||
RNase-free water | |||
RaPID lysis buffer | 20 mM Tris pH 7.5, 150 mM NaCl, 1.8 mM MgCl2, 0.5% NP-40, 5 mg/ml Heparin, 1 mM Dithiothreitol (DTT), 1 mM Phenylmethylsulfonyl Flouride (PMSF), 10 µg/ml Leupeptin, 10 µg/ml Aprotinin, 10 µg/ml Soybean Trypsin Inhibitor, 10 µg/ml Pepstatin, 20 U/ml DNase I, 100 U/ml Ribonuclease Inhibitor. | ||
2x Cross-linking reversal buffer | 100 mM Tris pH 7.4, 10 mM EDTA, 20 mM DTT, 2 % SDS. | ||
RaPID wash buffer | 20 mM Tris-HCl pH 7.5, 300 mM NaCl, 0.5% NP-40 | ||
0.5 M EDTA pH 8 | |||
Silver Stain Plus Kit | Bio-Rad | 161-0449 | For detecting proteins in polyacrylamide gels |
SD selective medium | 1.7 g/l Yeast nitrogen base with out amino acids and ammonium sulfate, 5 g/l Ammonium sulfate, 2% glucose, 350 mg/l Threonine, 40 mg/l Methionine, 40 mg/l Adenine, 50 mg/l Lysine, 50 mg/l Tryptophan, 20 mg/l Histidine, 80 mg/l Leucine, 30 mg/l Tyrosine, 40 mg/l Arginine | ||
Anti-eEF3 (EF3A,YEF3) | Gift from Kinzy TG. (UMDNJ Robert Wood Johnson Medical School) | 1:5,000 | |
Anti GFP antibody | Santa Cruz | sc-8334 | 1:3,000 |
Anti rabbit IgG-HRP conjugated | SIGMA | A9169 | 1:10,000 |