RNA-protein interactions lie at the heart of many cellular processes. Here, we describe an in vivo method to isolate specific RNA and identify novel proteins that are associated with it. This could shed new light on how RNAs are regulated in the cell.
RNA-binding proteins (RBPs) play important roles in every aspect of RNA metabolism and regulation. Their identification is a major challenge in modern biology. Only a few in vitro and in vivo methods enable the identification of RBPs associated with a particular target mRNA. However, their main limitations are the identification of RBPs in a non-cellular environment (in vitro) or the low efficiency isolation of RNA of interest (in vivo). An RNA-binding protein purification and identification (RaPID) methodology was designed to overcome these limitations in yeast and enable efficient isolation of proteins that are associated in vivo. To achieve this, the RNA of interest is tagged with MS2 loops, and co-expressed with a fusion protein of an MS2-binding protein and a streptavidin-binding protein (SBP). Cells are then subjected to crosslinking and lysed, and complexes are isolated through streptavidin beads. The proteins that co-purify with the tagged RNA can then be determined by mass spectrometry. We recently used this protocol to identify novel proteins associated with the ER-associated PMP1 mRNA. Here, we provide a detailed protocol of RaPID, and discuss some of its limitations and advantages.
РНК-связывающие белки (ОДП) составляют около 10% от S. CEREVISIAE белки 1,2 и около 15% белков млекопитающих 3-5. Они участвуют во многих клеточных процессах, таких как мРНК пост-транскрипционной обработки и регулирования, перевод, биогенеза рибосом, тРНК аминоацилирования и модификации, хроматина и многое другое. Важной подгруппой ОДП является мРНК-связывающие белки (mRNPs) 6,7. В процессе созревания мРНК, различные ОДП связывают расшифровку и урегулируют свою ядерную переработку, экспорт из ядра, клеточной локализации, трансляции и деградации 6-8. Таким образом, определенный набор ОДП, связанных с конкретным транскрипта в любой момент времени определяет его обработки и в конечном счете его судьба.
Идентификация ОДП, связанных с мРНК может значительно улучшить наше понимание процессов, лежащих в основе их пост-транскрипционной регуляции. Различные генетические, Микроскопические, биохимические и биоинформатики методы были использованы для идентификации белков , участвующих в регуляции мРНК (обзор 9-11). Тем не менее, лишь немногие из этих методов позволяют идентифицировать белки, связанные с конкретной мРНК-мишени. Следует особо отметить Дрожжи Три Гибридная система (Y3H), которая использует мРНК представляют интерес в качестве приманки для скрининга библиотеку экспрессии в клетках дрожжей. Положительные клоны, как правило , наблюдается через выражение выбора роста или репортера 12-14. Основным преимуществом этого метода является большое количество белков, которые можно сканировать в сотовой среде и способность измерения силы взаимодействия РНК-белок. Недостатками включают относительно большое число ложных положительных результатов из-за неспецифического связывания, а также высокий потенциал ложных отрицательных результатов из-за, в частности, до неправильного сворачивания от добычи слитого белка или РНК приманки.
Альтернативой генетического подхода является сродство purifiКатион РНК с его ассоциированных белков. Поли А-содержащий мРНК, могут быть выделены посредством использования олиго дТ колонн, и их ассоциированные белки обнаруживаются с помощью масс-спектрометрии. Взаимодействие РНК-белок сохраняется в клеточном контексте путем сшивания, что делает малой дальности ковалентные связи. Использование олиго дТ колонке дает общее представление о всей протеома , который связан с любым поли – А-содержащей мРНК 3,5,15. Тем не менее, это не дает список белков, которые связаны с определенной мРНК. Очень немногие из них будут доступны для выполнения такой идентификации. Метод ПАР влечет за собой трансфекцию нуклеиновой кислоты с комплементарности мРНК – мишени 16,17. Нуклеиновая кислота также присоединен к пептиду, который позволяет сшивающего ОДП в непосредственной близости от сайта взаимодействия. После сшивания, КПБ-пептид-нуклеиновая кислота может быть выделена и подвергнута анализу протеомики. В последнее время методология аптамеры на основе былауспешно применяется для извлечения из клеточных линий млекопитающих 18. РНК аптамеров с улучшенным сродством к стрептавидином была разработана и слиты с последовательностью, представляющей интерес (АС богатых элемент (ARE), в данном случае). РНК аптамеров-ARE была присоединена к стрептавидином бус и смешивают с лизата клеток. Белки, которые связаны с последовательности были очищены и идентифицированы с помощью масс-спектрометрии (МС). Хотя этот метод обнаружены ассоциации , которые имеют место вне клеточных параметров (то есть, в пробирке), то, вероятно, будет изменен в будущем , с тем , чтобы ввести аптамеров в геном и , таким образом , позволяют выделение белков , ассоциированных с мРНК , в то время как в клеточная среда (то есть, в естественных условиях). У дрожжей, где генетические манипуляции хорошо установлена, экспрессный метод (разработан в лаборатории профессора Джеффа Джерст в) обеспечивает представление ассоциаций 19 в естественных условиях. RAPID сочетает в себе конкретное и сильное связывание белка MS2 пальто (MS2-CP) в РНК последовательности MS2, и на стрептавидин-связывающий домен (СБП) с стрептавидином гранулами, конъюгированными. Это обеспечивает эффективную очистку MS2-меченых мРНК через стрептавидином бусин. Кроме того, выражение 12 копий петель МС2 позволяет использовать до шести MS2-ХП связываться одновременно с РНК и повышение эффективности ее изоляции. Таким образом, этот протокол был предложен для того, чтобы идентифицировать новые мРНК-ассоциированных белков, как только элюированные образцы подвергали анализу протеомики с помощью масс-спектрометрии.
Недавно мы использовали RAPID для идентификации новых белков , связанных с дрожжами Pmp1 мРНК 20. Pmp1 мРНК ранее показано, что связано с ER мембрану и обнаружили , что его 3 'нетранслируемой области (UTR) , чтобы быть главным фактором , определяющим в этой ассоциации 21. Таким образом, ОДП , которые связывают Pmp1 3 'UTR, вероятно, играют важную роль в его локализации. RAPID с последующей жидкостной хроматографY-масс – спектрометрии / масс – спектрометрии (ЖХ-МС / МС) привело к идентификации многих новых белков , которые взаимодействуют с Pmp1 20. Здесь мы приводим подробный протокол методологии RAPID, важные элементы управления, которые должны быть сделаны, и технические советы, которые могут улучшить урожайность и специфичность.
Различные методы используют выделение специфических мРНК для выявления связанных с ними белков 11,34 35. Эти методы применяются в пробирке и в естественных условиях стратегий для исследования РНК-белковых взаимодействий. В пробирке методы инкубировать экзоген…
The authors have nothing to disclose.
Мы благодарим профессора Джеффа Джерст и Борис Слободин за их полезные советы по настройке Стремительное протокола и предоставления необходимых плазмид. Мы также благодарим доктора Avigail ATIR-Ланде за помощь в создании этого протокола и д-р Тамар Зива из Smoler протеомики Центра за помощь с анализом LC-MS / MS. Мы благодарим профессора Т.Г. Kinzy (Rutgers) для YEF3 антитела. Эта работа была поддержана грантом 2011013 от научного фонда бинасиональ.
Tris | sigma | T1503 | |
SDS | bio-lab | 1981232300 | |
DTT | sigma | D9779 | |
Acidic Phenol (pH 4.3) | sigma | P4682 | |
Acidic Phenol: Chloroform (5:1, pH 4.3) | sigma | P1944 | |
Chloroform | bio-lab | 3080521 | |
Formaldehyde | Frutarom | 5551820 | |
Glycine | sigma | G7126 | |
NP-40 | Calbiochem | 492016 | |
Heparin | Sigma | H3393 | |
Phenylmethylsulfonyl Flouride (PMSF) | Sigma | P7626 | |
Leupeptin | Sigma | L2884 | |
Aprotinin | Sigma | A1153 | |
Soybean Trypsin Inhibitor | Sigma | T9003 | |
Pepstatin | Sigma | P5318 | |
DNase I | Promega | M610A | |
Ribonuclease Inhibitor | Takara | 2313A | |
Glass Beads | Sartorius | BBI-8541701 | 0.4-0.6mm diameter |
Mini BeadBeater | BioSpec | Mini BeadBeater 16 | |
Guanidinium | Sigma | G4505 | |
Avidin | Sigma | A9275 | |
Streptavidin Beads | GE Healthcare | 17-5113-01 | |
Bovine serum albumin (BSA) | Sigma | A7906 | |
Yeast tRNA | Sigma | R8508 | |
Biotin | Sigma | B4501 | |
Yeast extract | Bacto | 288620 | |
peptone | Bacto | 211677 | |
Glucose | Sigma | G8270 | |
1 x Phosphate-Buffered saline (PBS) | |||
0.2 M NaOH | |||
4 x Laemmli Sample Buffer (LSB) | 0.2 M Tris-Hcl pH 6.8, 8% SDS, 0.4 M DTT, 40% glycerol, 0.04% Bromophenol-Blue. | ||
Hot phenol lysis buffer | 10 mM Tris pH 7.5, 10 mM EDTA, 0.5% SDS | ||
3 M Sodium Acetate pH 5.2 | |||
100% and 70% Ethanol (EtOH) | |||
RNase-free water | |||
RaPID lysis buffer | 20 mM Tris pH 7.5, 150 mM NaCl, 1.8 mM MgCl2, 0.5% NP-40, 5 mg/ml Heparin, 1 mM Dithiothreitol (DTT), 1 mM Phenylmethylsulfonyl Flouride (PMSF), 10 µg/ml Leupeptin, 10 µg/ml Aprotinin, 10 µg/ml Soybean Trypsin Inhibitor, 10 µg/ml Pepstatin, 20 U/ml DNase I, 100 U/ml Ribonuclease Inhibitor. | ||
2x Cross-linking reversal buffer | 100 mM Tris pH 7.4, 10 mM EDTA, 20 mM DTT, 2 % SDS. | ||
RaPID wash buffer | 20 mM Tris-HCl pH 7.5, 300 mM NaCl, 0.5% NP-40 | ||
0.5 M EDTA pH 8 | |||
Silver Stain Plus Kit | Bio-Rad | 161-0449 | For detecting proteins in polyacrylamide gels |
SD selective medium | 1.7 g/l Yeast nitrogen base with out amino acids and ammonium sulfate, 5 g/l Ammonium sulfate, 2% glucose, 350 mg/l Threonine, 40 mg/l Methionine, 40 mg/l Adenine, 50 mg/l Lysine, 50 mg/l Tryptophan, 20 mg/l Histidine, 80 mg/l Leucine, 30 mg/l Tyrosine, 40 mg/l Arginine | ||
Anti-eEF3 (EF3A,YEF3) | Gift from Kinzy TG. (UMDNJ Robert Wood Johnson Medical School) | 1:5,000 | |
Anti GFP antibody | Santa Cruz | sc-8334 | 1:3,000 |
Anti rabbit IgG-HRP conjugated | SIGMA | A9169 | 1:10,000 |