Summary

通过催化裂化转换从菜籽油生物燃料和生物化学实验室生产

Published: September 02, 2016
doi:

Summary

本文提出的实验方法,以产生从低芥酸菜子油在催化剂在温和的温度下,存在一种基于矿物饲料混合生物燃料和生物化学。气态,液态,并从反应单元固体产物进行定量和表征。转化率和个别的产品产率的计算和报告。

Abstract

The work is based on a reported study which investigates the processability of canola oil (bio-feed) in the presence of bitumen-derived heavy gas oil (HGO) for production of transportation fuels through a fluid catalytic cracking (FCC) route. Cracking experiments are performed with a fully automated reaction unit at a fixed weight hourly space velocity (WHSV) of 8 hr-1, 490-530 °C, and catalyst/oil ratios of 4-12 g/g. When a feed is in contact with catalyst in the fluid-bed reactor, cracking takes place generating gaseous, liquid, and solid products. The vapor produced is condensed and collected in a liquid receiver at -15 °C. The non-condensable effluent is first directed to a vessel and is sent, after homogenization, to an on-line gas chromatograph (GC) for refinery gas analysis. The coke deposited on the catalyst is determined in situ by burning the spent catalyst in air at high temperatures. Levels of CO2 are measured quantitatively via an infrared (IR) cell, and are converted to coke yield. Liquid samples in the receivers are analyzed by GC for simulated distillation to determine the amounts in different boiling ranges, i.e., IBP-221 °C (gasoline), 221-343 °C (light cycle oil), and 343 °C+ (heavy cycle oil). Cracking of a feed containing canola oil generates water, which appears at the bottom of a liquid receiver and on its inner wall. Recovery of water on the wall is achieved through washing with methanol followed by Karl Fischer titration for water content. Basic results reported include conversion (the portion of the feed converted to gas and liquid product with a boiling point below 221 °C, coke, and water, if present) and yields of dry gas (H2-C2‘s, CO, and CO2), liquefied petroleum gas (C3-C4), gasoline, light cycle oil, heavy cycle oil, coke, and water, if present.

Introduction

有在私营和公共部门的有力全球利益寻找高效,经济的手段,从生物质衍生的原料生产运输燃料。这种兴趣超过石油燃烧化石燃料的温室气体(GHG)的排放量及其相关的对全球变暖的贡献的实质性贡献普遍关注驱动。此外,还有在北美和欧洲的强烈政治意愿,以取代外国生产的石油可再生国内液体燃料。 2008年,生物燃料提供全球运输燃料1的1.8%。在许多发达国家中,要求生物燃料从6%代替以石油燃料的10%,在不久的将来,2。在加拿大,法规要求的平均的可再生燃料的5%,汽油从2010年开始12月15日,3。可再生能源指令(RED)在欧洲还要求对欧盟反有10%的可再生能源目标内容2020年4口部门。

我们面临的挑战是开发和演示一种经济可行的途径,从生物质生产可替代运输燃料。生物来源包括基于甘油三酯的生物量,例如植物油和动物脂肪,以及废食用油和纤维素生物质如木屑,森林废物和农业残留物。在过去的二十年间,研究使用集中在源自生物质的油处理的评估传统的流体催化裂化(FCC)5 12,负责产生大部分汽油在石油精炼的技术。我们在本研究中的新方法是共同处理的低芥酸菜子油,油砂沥青衍生的原料混合。通常情况下,沥青之前必须提升精炼而成,生产精炼厂原料,如合成原油(SCO) – 这种工艺路线特别是高耗能,占温室气体emissi的68-78%从附件上合组织生产13,2011年,加拿大构成的温室气体排放总量14的2.6%。与BIOFEED更换升级HGO的部分将减少温室气体排放,因为生物燃料的生产涉及碳足迹要小得多。菜籽油选择在这工作,因为它是在加拿大和美国的丰富。这种原料具有类似于HGOs的同时硫,氮和金属的可能影响的FCC性能或产品质量的内容是可以忽略不计的密度和粘度。此外,这种协同处理选项提供显著的技术和经济优势,因为它能够在现有炼油厂基础设施的利用,因此,将需要很少的附加硬件或炼油厂的修饰。此外,可能有可能导致产品质量的提高,当共同处理高度芳香沥青其直链的生物量对应喂潜在的协同作用。但是,协处理涉及重要的技术挑战。这些包括生物饲料的独特的物理和化学特性:高的氧含量,富含链烷烃的组合物,用石油原料的相容性,结垢可能性

本研究提供了通过催化裂化在实验室规模的生物燃料的生产从低芥酸菜子油中的详细协议。一个完全自动化的反应体系-在此工作的实验室测试单元(LTU)简称15 -用于这项工作1示意如何单元操作。这LTU已成为实验室研究FCC的行业标准。本研究的目的是测试在LTU的适用性裂化的低芥酸菜子油,以产生燃料和化学品与减少温室气体的排放量的目的。

图1
图1:概念illustratio呈现流线电抗器。插图N的催化剂,饲料,产品和稀释剂。 请点击此处查看该图的放大版本。

Protocol

注意:在使用材料前请咨询所有相关材料安全数据表(MSDS)。而穿着适当的个人防护设备(防护眼镜,手套,裤子,封闭趾鞋,白大褂),开放,转让和原油样品的处理应该发生在一个通风通风柜与原油样品的工作只应做的。加热烃可以是在空气中可燃的,并且在反应体系应该仔细与原油的混合物在使用之前泄漏检查。反应器可以达到温度高达750℃,高温防护手套应靠近热表面工作时使用。 …

Representative Results

既定协议已被成功地应用到一个油混合物的15:85体积比:低芥酸菜子油和在SCO衍生HGO 20之间( 即 ,14.73 85.27质量比)。对于实际的原因(成本,菜籽油的可用性,以及在商业运作可能面临的挑战),研究的重点是含15 v%的菜籽油原料此外,虽然高浓度的饲料也试过。该共混物在490-530℃,8.0小时-1的WHSV具有变化的催化剂/油比(序列11.25,10,8,6,4和1…

Discussion

这里所描述的协议利用含有批处理流化催化剂颗粒的模拟进料油裂化和催化剂再生单个反应器的循环操作。待裂化的油通过用其尖端靠近流化床底部的喷射器管预热并从顶部送入。催化裂化后产生的蒸气冷凝并在接收器中收集,并收集液体产物随后分析模拟蒸馏,以确定在不同沸点范围的馏分的产率。所述不可冷凝的气态产物被送到一个在线气相色谱仪进行分析,以确定干气和液化气的产率。气?…

Declarações

The authors have nothing to disclose.

Acknowledgements

作者要感谢CanmetENERGY技术中心为它的技术支持,Suncor能源公司的分析实验室用于供给合成原油。这项研究的部分资金由加拿大自然资源部和加拿大与项目ID A22.015能源研究和发展(分发司)的跨部门计划政府提供的。张翼要感谢他的加拿大自然科学和客座研究员工程研究理事会(NSERC)从2015年1月至2016年1月。

Materials

Advanced Cracking Evaluation (ACE) Unit Kayser Technology Inc. ACE R+ 46 Assembled by Zeton Inc. SN:505-46;  consisting of (1) a reactor; (2) catalyst addition system; (3) feed delivery system;  (4) liquid collection system; (5) gas collection system; (6) gas analyzing system; (7) catalyst regeneration system; (8) CO catalytic convertor; (9) coke analyzing system
Reactor (ACE) Kayser Technology Inc. V-105 A 1.6 cm ID stainless steel tube having a tapered conical bottom and with a diluent (nitrogen) flowing from the bottom to fluidize the catalyst and also serve as the stripping gas at the end of the run
Catalyst Addition System (ACE) Kayser Technology Inc. Six hoppers (V-120F, with respective valves) for addition of catalyst for up to 6 runs
Feed Delivery System (ACE) Kayser Technology Inc. Consisting of feed bottle (V-100), syringe (FS-115), pump (P-100), and injector (with 1.125 inch injector height, i.e., the distance from the lowest point of the conical reactor bottom to the bottom end of the feed injector)
Liquid Collection System (ACE) Kayser Technology Inc. Six liquid receivers (V-110F) immersed in a common coolant bath (Ethylene glycol/water mixture in 50:50 mass ratio) at about –15 °C in a large tank (V-145)
Gas Collection System (ACE) Kayser Technology Inc. Based on water displacement principle; consisting of gas collection vessel (V-150) with a motor-driven stirrer (MTR-100), and a weight scale (WT-100) for weighing the displaced water collected in a beaker (V100) 
Gas Analyzing System (ACE) Kayser Technology Inc. Key element being Agilent micro GC (model 3000A) with four capillary columns equipped with respective thermal conductivity detectors (TCDs) 
Catalyst Regeneration System (ACE) Kayser Technology Inc. V-105 Spent catalyst in reactor being burned in situ in air at +700 °C to ensure complete removal of carbon deposited on the catalyst
CO Catalytic Convertor  (ACE) Kayser Technology Inc. A reactor (V-140) with CuO as catalyst to oxidize any CO and hydrocarbons in exhausted flue gas to CO2 (to be analyzed by IR gas analyzer) and H2O (to be absorbed by a dryer)
Coke Analyzing System (ACE) Kayser Technology Inc. Servomex (Model 1440C) IR analyzer for measuring CO2 in exhausted flue gas
R+MM Software Suite Kayser Technology Inc. Including iFIX 3.5 
Agilent Micro GC Agilent Technologies 3000A For gas analysis after cracking
Cerity Networked Data System Agilent Technologies Software for Agilent Micro GC
CO2 Gas Analyser Servomex Inc. 1440C SN: 01440C1C02/2900
NESLAB Refrigerated Bath Themo Electron Corporation RTE 740 SN: 104300061
Orion  Sage Syringe Pump Themo Electron Corporation M362 For delivering feed oil to injector tube
Synthetic Crude Oil (SCO)  Suncor Energy Inc. Identified as Suncor OSA 10-4.1
Catalyst P Petro-Canada Refinery Equilibrium catalyst
Balance Mettler Toledo AB304-S For weighing liquid product receivers
Balance Mettler Toledo XS8001S For weighing water displaced by gas product
Ethylene Glycol Fisher Scientifc Inc. CAS 107-21-1 Mixed with distilled water as coolant (50 v% )
Drierite W.A. Hammond Drierite Co. Ltd. 24001 For water absorption after CO catalytic converter
Copper Oxide LECO Corporation 501-170 Catalyst for conversion of CO to CO2
Toluene Fisher Scientific Co.  CAS 108-88-3 For cleaning liquid receivers
Acetone Fisher Scientific Co.  CAS 67-64-1 For cleaning liquid receivers
Micro GC Calibration Gas Air Liquid Canada Inc. SPG-25MX0015306 Multicomponent standard gas
19.8% CO2 Standard Gas BOC Canada Ltd. 24069890 For calibration of IR analyzer
Argon Gas Linde Canada ltd. 24001306 Grade 5.0 Purity
Helium Gas Linde Canada ltd. 24001333 Grade 5.0 Purity
Gas analyzer GC Module Inficon GCMOD-15 Channel A
Gas analyzer GC Module Inficon GCMOD-03 Channel B
Gas analyzer GC Module Inficon GCMOD-04 Channel C
Gas analyzer GC Module Inficon GCMOD-73 Channel D
HP 6890 GC Hewlett-Packard Co.  G1530A For simulated distillation
ASTM 2887 Standard Sample PAC L.P. 26650.150 For quality control in simulated distillation
ASTM 2887 Standard Sample PAC L.P. 25950.200 For calibration in simulated distillation
Column for GC 6890 (simulated distillation) Agilent Technologies CP7562 10m x 0.53mm x 1.2µm, HP 6890 GC column
Liquid Nitrogen Air Liquid Canada Inc. SPG-NIT1AC240LC For use in simulated distillation 
Nitrogen Air Liquid Canada Inc. Bulk (building N2) For use in ACE unit operation
Isotemp Programmable Furnace Thermo Fisher Scientifc Inc. 10-750-126 For calcination of catalyst
GC Vials, Crimp Top Chromatograghic Specialties Inc C223682C 2ml, for liquid product
Seals, Crimp Top Chromatograghic Specialties Inc C221150 11 mm, for use with GC vials
4 oz clear Boston round bottles Fisher Scientific Co.  02-911-784 With PE cone lined caps, for use in feed system
Sieve Endecotts Ltd. 6140269 Aperture 38 micron
Sieve Endecotts Ltd. 6146265 Aperture 250 micron
Shaker Endecotts Ltd. MIN 2737-11 Minor-Meinzer 2 Sieve Shaker for catalyst screening
V20 Volumetric KF Titrator Mettler Toledo 5131025056 For water content analysis of the liquid product
Hydranal Composite 5 Sigma-Aldrich 34805-1L-R Reagent for Karl Fischer titration
Methanol (extremely low water grade) Fisher Scientific Co.  A413-4 Mixed with toluene (40:60 w/w) for KF titration: also used to recover water in receiver
Glass Wool Fisher Scientific Co.  11-388 Placed inside the top of receiver outlet arm 

Referências

  1. Bringezu, S., et al. Towards Sustainable Production and Use of Resources – Assessing Biofuels. United Nations Environment Programme. , (2009).
  2. Sheehan, J., Camobresco, V., Duffield, J., Graboski, M., Shapouri, H. Life cycle inventory for biodiesel and petroleum diesel for use in an urban bus. National Renewable Energy Laboratory Report. , (1998).
  3. . Renewable Fuels Regulations. Canada Gazette Part II. 144 (18), 1614-1740 (2010).
  4. . Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance). Official Journal of the European Union. 140, 16-62 (2009).
  5. Al-Sabawi, M., Chen, J., Ng, S. Fluid catalytic cracking of biomass-derived oils and their blends with petroleum feedstocks: A Review. Energy Fuels. 26 (9), 5355-5372 (2012).
  6. Dupain, X., Costa, D. J., Schaverien, C. J., Makkee, M., Moulijn, J. A. Cracking of a rapeseed vegetable oil under realistic FCC conditions. Appl. Catal. B: Environ. 72 (1-2), 44-61 (2007).
  7. Tian, H., Li, C., Yang, C., Shan, H. Alternative processing technology for converting vegetable oils and animal fats to clean fuels and light olefins. Chin J Chem Eng. 16 (3), 394-400 (2008).
  8. Melero, J. A., Clavero, M. M., Calleja, G., Garcia, A., Miravalles, R., Galindo, T. Production of bio-fuels via the catalytic cracking of mixtures of crude vegetable oils and nonedible animal fats with vacuum gas oil. Energy Fuels. 24 (1), 707-717 (2010).
  9. Bielansky, P., Reichhold, A., Schönberger, C. Catalytic cracking of rapeseed oil to high octane gasoline and olefins. Chem Eng Process. 49 (8), 873-880 (2010).
  10. Ng, S. H., Shi, Y., Ding, L., Chen, S. Catalytic cracking of a rapeseed oil for production of transportation fuels and chemicals: Yield structure. 2010 AIChE Annual Meeting. , (2010).
  11. Bielansky, P., Weinert, A., Schönberger, C., Reichhold, A. Catalytic conversion of vegetable oils in a continuous FCC pilot plant. Fuel Process Technol. 92 (12), 2305-2311 (2011).
  12. Ng, S. H., Lay, C., Bhatt, S., Freel, B., Graham, R. Upgrading of biomass-derived liquid to clean fuels. 2012 AIChE Annual Meeting. , (2012).
  13. Ordorica-Garcia, G., Croiset, E., Douglas, P., Elkamel, A., Gupta, M. Modeling the energy demands and greenhouse gas emissions of the Canadian oil sands industry. Energy Fuels. 21 (4), 2098-2111 (2007).
  14. . . Canada’s Emission Trends. , (2013).
  15. Kayser, J. C. Versatile fluidized bed reactor. US Patent. , (2000).
  16. . . ACE Operating Manual: PID Drawing No. R+ 101 and 102. , (2007).
  17. . . System Manual: ACE – Model R+. , (2007).
  18. . . ASTM D2887-15 Standard test method for boiling range distribution of petroleum fractions by gas chromatography. , (2015).
  19. . . AASTM D4377-00 Standard test method for water in crude oils by potentiometric Karl Fischer titration. , (2015).
  20. Ng, S. H., et al. FCC coprocessing oil sands heavy gas oil and canola oil. 1. Yield structure. Fuel. 156, 163-176 (2015).
  21. Cox, J. D., Wagman, D. D., Medvedev, V. A. . CODATA Key values for thermodynamics. , (1984).
  22. Ng, S. H., et al. FCC study of Canadian oil-sands derived vacuum gas oils. 1. Feed and catalyst effects on yield structure. Energy Fuels. 16 (5), 1196-1208 (2002).
  23. Ng, S. H., Dabros, T., Humphries, A. Fluid catalytic cracking quality improvement of bitumen after paraffinic froth treatment. Energy Fuels. 21 (3), 1432-1441 (2007).
  24. Scherzer, J., Magee, J. S., Mitchell, M. M. Chapter 5, Correlation between catalyst formulation and catalytic properties. Fluid Catalytic Cracking: Science and Technology. , 145-182 (1993).
  25. Fisher, I. P. Effect of feedstock variability on catalytic cracking yields. Appl. Catal. 65 (2), 189-210 (1990).
  26. Ng, S. H., et al. Study of Canadian FCC feeds from various origins and treatments. 1. Ranking of feedstocks based on feed quality and product distribution. Energy Fuels. 18 (1), 160-171 (2004).
  27. Ng, S. H., et al. Study of Canadian FCC feeds from various origins and treatments. 2. Some specific cracking characteristics and comparisons of product yields and qualities between a riser reactor and a MAT unit. Energy Fuels. 18 (1), 172-187 (2004).
  28. Ng, S. H., et al. Key observations from a comprehensive FCC study on Canadian heavy gas oils from various origins. 1. Yield profiles in batch reactors. Fuel Process Technol. 87 (6), 475-485 (2006).
  29. Scherzer, J. Octane-enhancing zeolitic FCC catalysts: Scientific and technical aspects. Catalysis Reviews: Science and Engineering. 31 (3), 215-354 (1989).
  30. . . ASTM D7964/D7964M-14 Standard test method for determining activity of fluid catalytic cracking (FCC) catalysts in a fluidized bed. , (2014).
  31. . . ASTM D5154-10 Standard test method for determining activity and selectivity of fluid catalytic cracking (FCC) catalysts by Microactivity test. , (2010).
  32. Moorehead, E. L., McLean, J. B., Cronkright, W. A., Magee, J. S., Mitchell, M. M. Chapter 7, Microactivity evaluation of FCC catalysts in the laboratory: Principles, approaches and applications. Fluid Catalytic Cracking: Science and Technology. , 223-255 (1993).
  33. Rawlence, D. J., Gosling, K. FCC catalyst performance evaluation. Appl. Catal. 43 (2), 213-237 (1988).

Play Video

Citar este artigo
Ng, S. H., Shi, Y., Heshka, N. E., Zhang, Y., Little, E. Laboratory Production of Biofuels and Biochemicals from a Rapeseed Oil through Catalytic Cracking Conversion. J. Vis. Exp. (115), e54390, doi:10.3791/54390 (2016).

View Video