Summary

在线含硫化合物在复杂油气矩阵氮分析

Published: August 05, 2016
doi:

Summary

结合氮化学发光检测全二维气相色谱的方法,已经开发和在一个复杂的烃矩阵施加到含氮化合物的在线分析。

Abstract

到重质原油的移位和使用替代化石资源如页岩油是石化工业的一个挑战。重质原油和页岩油的组合物而变化基本上取决于混合物的来源。特别是,它们包含含有比常规使用的甜原油的含氮化合物的量增加。氮化合物对在焦化装置和蒸汽裂解发生热过程的操作的影响,并且一些物种被认为是对环境有害的,涉及热解条件下含氮化合物的反应的详细分析提供了有价值的信息。因此,一个新的方法已经开发,并用含有较高的氮含量, 即,页岩油的原料验证。首先,将进料通过加上NITR全二维气相色谱(GC×GC)离线特征蛋白原化学发光检测器(NCD)。在第二步骤中的在线分析方法,开发并通过喂食吡啶溶解在庚烷上的蒸汽裂化试验工厂试验。前者是为最丰富的类中存在的页岩油化合物中的一个有代表性的化合物。将反应器流出物的组合物通过一个内部开发的自动取样系统,随后通过在气相×GC加上时间飞行质谱仪(TOF-MS),火焰电离检测器的样品立即注射法(FID )和NCD。使用NCD和2-氯吡啶作为内部标准含氮化合物的定量分析的新方法已被开发并展示。

Introduction

轻质低硫原油储量逐步减弱,因此,正在考虑替代化石资源在能源和石化行业中使用。另外,可再生能源,例如通过生物质的快速热解产生的生物油正在成为生物基燃料和化学品的一个更有吸引力的资源。然而,重质原油是因为在加拿大和委内瑞拉1-3大探明储量的逻辑首选。后者被认为是最大的原油储量在世界上和它们的组合物类似于天然沥青的组合物。向生物油相似,重质原油从光原油可以通过高粘度在贮存温度,高密度(低API比重),和氮,氧的显著内容,和含硫化合物4,5-不同。另一个有希望的替代方案是页岩油,油页岩的。油页岩是一种细粒沉积岩CON泰宁干酪根,有机化学化合物与摩尔质量高达1000达6的混合物。干酪根可以包含有机氧,氮和硫中的烃类基体;视,年龄,和提取条件。全球表征方法已经表明,在页岩油和重质原油的杂原子(S,O和N)的浓度典型地比对用于例如石化行业6的制品设置的规格基本上更高。它是有据可查的,目前的重常规原油和页岩油含氮化合物对在加氢裂化,催化裂化和重整过程7的催化剂活性具有负面影响。类似地,已经报道了含氮化合物的存在是一个安全问题,因为它们促进在蒸汽裂化8的冷箱胶质形成。

这些处理和安全CHALlenges是强烈的驾驶员来提高用于离线和在线含有复杂的碳氢化合物基质化合物氮气表征当前方法。加上一个氮化学发光检测器(NCD)的二维气相色谱(GC×GC)是一种高级的表征技术相比的一维气相色谱(GC),用于分析常规柴油机或液化煤样品7。最近,一个方法已经被开发并在页岩油6施加的氮含量脱机表征,鉴定存在于中间馏分9萃取氮化合物,以及废塑料的热解油10的详细结构的测定。

因此,很明显是GC×GC分析是分析复杂混合物11-17强大的脱机处理技术。然而,上线的应用是更具挑战性,因为需要一个可靠的一个第二非歧视抽样方法。其中第一个发达的方法为全面上线的表征是通过分析利用TOF-MS和FID 18蒸汽裂化反应器污水证明。的GC设置,优化和适当的列组合,启用由碳氢化合物从甲烷到多环芳烃(多环芳烃)18样品的分析。目前的工作由它延伸到存在于复杂的烃类混合物含氮化合物的定性和定量采取这种方法到一个新水平。这样的方法中,以提高这些化合物在一些流程和应用程序所扮演的角色的基本了解需要别人。据作者所知,关于含氮化合物的转化过程中的动力学信息是稀缺的19,部分原因是由于缺乏适当的方法来识别和量化含氮化合物S IN的反应器流出物。建立的方法进行离线和在线分析因此之前甚至可以尝试原料重建20-27和动力学建模的先决条件。其中之一将由含有氮的化合物的准确的鉴定和定量受益字段是蒸汽裂解或热解。生物和重矿物饲料的蒸汽裂解或热解反应器包含数以千计的碳氢化合物和包含杂原子的化合物。此外,由于进料的复杂性和发生化学的自由基性质,可以在数千自由基物质28,这使得即使是比原料更复杂的反应器流出物之间发生数万反应。

在烃类混合物氮主要存在于芳族结构, 例如,吡啶或吡咯;因此,大多数实验的努力一直致力于为这些结构的分解数目字。氰化氢和乙炔被报告为主要产品的温度范围内的1,148-1,323 K.其他产品,如芳族化合物和非挥发性焦油研究吡啶的热分解是在少量的29也检测到。吡咯的热分解,用冲击波实验在更广泛的温度范围1,050-1,450钾调查。主要产物是3-丁烯腈, 顺式反式 2-丁烯腈,氰化氢,乙腈,2-丙烯腈,丙腈,和丙炔腈30。此外热分解激波管实验在导致同类产品的光谱31,32高温下进行的吡啶。在这些研究中的产品的产量已经被施加GC的配备有FID,氮-磷检测器(NPD)31,质谱仪(MS)32及傅立叶变换红外(FTIR)光谱仪32测定</suP>。类似的方法实施FID和NPD的施加来分析页岩油的热解产物在连续流动反应器8。在273.15说明使用冷阱和GC-MS,Winkler 33表明,吡啶热解过程中的芳族化合物含杂原子的形成。 Zhang等人 34和德博诺等人 35施加Winkler 等人的方法用于研究的有机废物的热解。富氮的反应产物进行分析上线,使用耦合到热导检测器(TCD)34为GC。所收集的焦油用GC-MS 34,35离线分析。甲苯和吡啶的同时裂解表明相比吡啶热解在烟灰形成倾向的差值,表示自由基反应31,36的复杂性。

其中一个最全面的分析方法被用N开发ATHAN和同事37。他们用红外光谱,核磁共振(NMR)和GC-MS分析吡啶并二嗪和电子顺磁共振(EPR)光谱的分解产物进行跟踪自由基物种。 FTIR分析可以为大范围的产品的鉴定非常有效的办法,甚至多环芳烃38-40,不过量化是极具挑战性。校准需要在特定的温度和压力下41全套不同浓度为每个目标物种红外光谱。 Hong等的最近的工作证明了吡咯并吡啶分解42,43期间使用分子束质谱(MBMS)和可调谐同步加速器真空紫外光电离测定的产物和中间体的可能性。此实验方法使自由基的异构体的中间体和近阈值检测无INF选择性识别licting所分析的44种碎片。但是,使用MBMS分析测得的浓度的不确定性也很大。

在这项工作中,报道复杂的页岩油的第一个离线的综合表征结果。接着,使用一个在线GC×GC-TOF-MS / FID对在复杂的烃矩阵氮化合物的分析的局限性进行了讨论。最后,对于含有用GC×GC-NCD含氮化合物的在线量化新开发的方法是证明。产品的定性分析进行了使用TOF-MS,而FID和NCD被用于定量。的NCD的应用是相比于使用,因为它的较高的选择性的FID,检测下限和等摩尔反应的显着改进。

Protocol

注意:请咨询相关使用前,所有化合物的材料安全数据表(MSDS)。建议适当的安全措施。解决方案和样品应在通风橱,而使用个人防护装备准备。最佳实践意味着使用防护眼镜,防护手套,实验室,实验室外套,全长裤,封闭趾鞋。该反应器应该被适当密封几种反应物和反应产物可以是剧毒和致癌性。 1.离线GC×GC-NCD分析 样品制备离线GC×GC分析 选择-2-氯吡啶作为?…

Representative Results

使用脱机的GC×GC-NCD用于容纳页岩油样品中的含氮化合物的表征图3给出所得到的色谱图的下列类进行鉴定:吡啶类,苯胺类,喹啉,吲哚,吖啶,和咔唑。此外,各化合物的细致的量化是可能的。所收集的数据被用于确定个体化合物的浓度,将得到的值列于表5中。在分析样品含有4.21重量主要属于吡啶类含氮化合物的%。从一个加工点这种含氮量?…

Discussion

所描述的实验程序启用一个成功的全面的离线和在线识别和含氮化合物的定量所研究样品英寸

含在页岩油化合物氮气分离用的GC×GC-NCD,完成如图3,由于NCD不能用于识别,需要通过进行分析提前建立的观察物种的保留时间在GC×GC耦合 ​​到TOF-MS的基础上,为每个检测方法18,54的载气流量的优化的详细过程。流量适配导致化合物的相似的保留时间,使用不同…

Declarações

The authors have nothing to disclose.

Acknowledgements

“由弗拉芒政府长期结构性玛土撒拉资金”在佛兰德斯研究所创新通过促进科技(IWT)和支持的SBO项目“Bioleum”(IWT-SBO 130039)被确认。

Materials

2-Chloropyridine, 99% Sigma Aldrich C69802 Highly toxic
Shale oil Origin Colorado, US Piceance Basin in
Colorado, USA
Toxic
Pyridine, 99.8% Sigma Aldrich 270970 Highly toxic
Carbon Dioxide, industrial grade refrigerated liquid PRAXAIR CDINDLB0D Wear safety gloves and glasses
Helium, 99.99% PRAXAIR 6.0
Hydrogen, 99.95% Air Liquide 695A-49 Flammable
Oxygen Air Liquide 905A-49+ Flammable
Air Air Liquide 365A-49X
Nitrogen Air Liquide 765A-49
Hexane, 95+% Chemlab CL00.0803.9025 Toxic
Heptane, 99+% Chemlab CL00.0805.9025 Toxic
Nitrogen, industrial grade refrigerated liquid PRAXAIR P0271L50S2A001 Wear safety gloves and glasses
Autosampler Thermo Scientific, Interscience AI/AS 3000
High temperature 6 port/2 position valve Valco Instruments Company Incorporated SSACGUWT
Gas chromatograph Thermo Scientific, Interscience Trace GC ultra
Rafinery Gas Analyzer Thermo Scientific, Interscience KAV00309
rtx-1-PONA column Restek Pure Chromatography 10195-146
BPX-50 column SGE Analytical science 54741
TOF-MS Thermo Scientific, Interscience Tempus Plus 1.4 SR1 Finnigan
NCD Agilent Technologgies NCD 255
Chrom-card Thermo Scientific, Interscience HyperChrom 2.4.1
Xcalibur software Thermo Scientific, Interscience 1.4 SR1
Chrom-card software Thermo Scientific, Interscience HyperChrom 2.7
GC image software Zoex Corporation GC image 2.3

Referências

  1. Meyer, R. F., Witt, W. J. Definition and World Resources of Natural Bitumens. U.S. Geological Survey. , (1944).
  2. Dusseault, M. B. Comparing Venezuelan and Canadian Heavy Oil and Tar Sand. Petroleum Society’s Canadian International Petroleum Conference. , 2001-061 (2001).
  3. Hernández, R., Villarroel, I. Technological Developments for Enhancing Extra Heavy Oil Productivity in Fields of the Faja Petrolifera del Orinoco (FPO), Venezuela. AAPG Annual Convention and Exhibition. Search and Discovery Article. , 20205 (2013).
  4. Escobar, M., et al. The organic geochemistry of oil seeps from the Sierra de Perijá eastern foothills, Lake Maracaibo Basin, Venezuela. Org. Geochem. 42, 727-738 (2011).
  5. Shafiei, A., Dusseault, M. B. Geomechanics of thermal viscous oil production in sandstones. J. Petrol. Sci. Eng. 103, 121-139 (2013).
  6. Dijkmans, T., Djokic, M. R., Van Geem, K. M., Marin, G. B. Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC × GC – FID/SCD/NCD/TOF-MS. Fuel. 140, 398-406 (2015).
  7. Adam, F., et al. Comprehensive two-dimensional gas chromatography for basic and neutral nitrogen speciation in middle distillates. Fuel. 88, 938-946 (2009).
  8. Charlesworth, J. M. Monitoring the products and kinetics of oil shale pyrolysis using simultaneous nitrogen specific and flame ionization detection. Fuel. 65, 979-986 (1986).
  9. Lissitsyna, K., Huertas, S., Quintero, L. C., Polo, L. M. Novel simple method for quantitation of nitrogen compounds in middle distillates using solid phase extraction and comprehensive two-dimensional gas chromatography. Fuel. 104, 752-757 (2013).
  10. Toraman, H. E., Dijkmans, T., Djokic, M. R., Van Geem, K. M., Marin, G. B. Detailed compositional characterization of plastic waste pyrolysis oil by comprehensive two-dimensional gas-chromatography coupled to multiple detectors. J. Chromatogr. A. 1359, 237-246 (2014).
  11. Phillips, J. B., Beens, J. Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions. J. Chromatogr. A. 856, 331-347 (1999).
  12. Dallüge, J., Beens, J., Brinkman, U. A. T. Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool. J. Chromatogr. A. 1000, 69-108 (2003).
  13. Adahchour, M., Beens, J., Vreuls, R. J. J., Batenburg, A. M., Brinkman, U. A. T. Comprehensive two-dimensional gas chromatography of complex samples by using a ‘reversed-type’ column combination: application to food analysis. J. Chromatogr. A. 1054, 47-55 (2004).
  14. Marriott, P., Shellie, R. Principles and applications of comprehensive two-dimensional gas chromatography. TrAC, Trends Anal. Chem. 21, 573-583 (2002).
  15. Dutriez, T., et al. High-temperature two-dimensional gas chromatography of hydrocarbons up to nC60 for analysis of vacuum gas oils. J. Chromatogr. A. 1216, 2905-2912 (2009).
  16. Dutriez, T., Courtiade, M., Thiébaut, D., Dulot, H., Hennion, M. C. Improved hydrocarbons analysis of heavy petroleum fractions by high temperature comprehensive two-dimensional gas chromatography. Fuel. 89, 2338-2345 (2010).
  17. Vendeuvre, C., et al. Characterisation of middle-distillates by comprehensive two-dimensional gas chromatography (GC × GC): A powerful alternative for performing various standard analysis of middle-distillates. J. Chromatogr. A. 1086, 21-28 (2005).
  18. Van Geem, K. M., et al. On-line analysis of complex hydrocarbon mixtures using comprehensive two-dimensional gas chromatography. J. Chromatogr. A. 1217, 6623-6633 (2010).
  19. Van de Vijver, R., et al. Automatic Mechanism and Kinetic Model Generation for Gas- and Solution-Phase Processes: A Perspective on Best Practices, Recent Advances, and Future Challenges. Int. J. Chem. Kinet. 47, 199-231 (2015).
  20. Van Geem, K. M., Reyniers, M. F., Marin, G. B. Reconstruction of the Molecular Composition of Complex Feedstocks for Petrochemical Production Processes. 7th Netherlands Process Technology Symposium. , (2007).
  21. Van Geem, K. M., et al. Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices. Comput. Chem. Eng. 31, 1020-1034 (2007).
  22. Van Geem, K. M., Reyniers, M. F., Marin, G. B. Challenges of modeling steam cracking of heavy feedstocks. Oil Gas Sci. Technol. – Revue d’IFP. 63, 79-94 (2008).
  23. Alvarez-Majmutov, A., et al. Deriving the Molecular Composition of Middle Distillates by Integrating Statistical Modeling with Advanced Hydrocarbon Characterization. Energy Fuels. 28, 7385-7393 (2014).
  24. Hudebine, D., Verstraete, J. J., Hudebine, D., Verstraete, J., Chapus, T. Reconstruction of Petroleum Feedstocks by Entropy Maximization. Application to FCC Gasolines Statistical Reconstruction of Gas Oil Cuts. Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles. 66, 437-460 (2011).
  25. Verstraete, J. J., Schnongs, P., Dulot, H., Hudebine, D. Molecular reconstruction of heavy petroleum residue fractions. Chem. Eng. Sci. 65, 304-312 (2010).
  26. Neurock, M., Nigam, A., Trauth, D., Klein, M. T. Molecular representation of complex hydrocarbon feedstocks through efficient characterization and stochastic algorithms. Chem. Eng. Sci. 49, 4153-4177 (1994).
  27. Hudebine, D., Verstraete, J. J. Molecular reconstruction of LCO gasoils from overall petroleum analyses. Chem. Eng. Sci. 59, 4755-4763 (2004).
  28. Joo, E., Park, S., Lee, M. Pyrolysis reaction mechanism for industrial naphtha cracking furnaces. Ind. Eng. Chem. Res. 40, 2409-2415 (2001).
  29. Houser, T. J., Mccarville, E. M., Biftu, T. Kinetics of thermal decomposition of Pyridine in a Flow System. Int. J. Chem. Kinet. 12, 555-568 (1980).
  30. Lifshitz, A., Tamburu, C., Suslensky, A. Isomerization and decomposition of pyrrole at elevated temperatures: studies with a single-pulse shock tube. J. Phys. Chem. 93, 5802-5808 (1989).
  31. Memon, H. U. R., Bartle, K. D., Taylor, J. M., Williams, A. The shock tube pyrolysis of pyridine. Int. J. Energy Res. 24, 1141-1159 (2000).
  32. Mackie, C. J., Colket, M. B., Nelson, P. F. Shock tube Pyrolysis of Pyridine. J. Phys. Chem. 94, 4099-4106 (1990).
  33. Winkler, K. J., Karow, W., Rademacher, P. Gas phase pyrolysis of heterocyclic compounds, part 3. flow pyrolysis and annulation reactions of some nitrogen heterocycles. A product oriented study. Arkivoc. , 576-602 (2000).
  34. Zhang, J., Tian, Y., Cui, Y., Zuo, W., Tan, T. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: A protein model compound study. Bioresour. Technol. 132, 57-63 (2013).
  35. Debono, O., Villot, A. Nitrogen products and reaction pathway of nitrogen compounds during the pyrolysis of various organic wastes. J. Anal. Appl. Pyrolysis. 114, 222-234 (2015).
  36. Alexiou, A., Williams, A. Soot formation in shock-tube pyrolysis of pyridine and toluene-pyridine mixtures. Fuel. 73, 1280-1283 (1994).
  37. Nathan, R. H., Douglas, K. R. Radical pathways in the thermal decomposition of pyridine and diazines: a laser pyrolysis and semi-empirical study. J. Chem. Soc. 2, 269-276 (1998).
  38. Boersma, C., Bregman, J. D., Allamandola, L. J. Properties of Polycyclic Aromatic Hydrocarbons in the Northwest Photon Dominated Region of NGC 7023. I. PAH Size, Charge, Composition, and Structure Distribution. ApJ. 769, 117 (2013).
  39. Boersma, C., Bregman, J., Allamandola, L. J. Properties of Polycyclic Aromatic Hydrocarbons in the Northwest Photon Dominated Region of NGC 7023. II. Traditional PAH Analysis Using k-means as a Visualization Tool. ApJ. 795, (2014).
  40. Boersma, C., Bregman, J., Allamandola, L. J. Properties of Polycyclic Aromatic Hydrocarbons in the Northwest Photon Dominated Region of NGC 7023. III. Quantifying the Traditional Proxy for PAH Charge and Assessing its Role. ApJ. 806, 121 (2015).
  41. Stec, A. A., et al. Quantification of fire gases by FTIR: Experimental characterisation of calibration systems. Fire Saf. J. 46, 225-233 (2011).
  42. Hong, X., Zhang, L., Zhang, T., Qi, F. An Experimental and Theoretical Study of Pyrrole Pyrolysis with Tunable Synchrotron VUV Photoionization and Molecular-Beam Mass Spectrometry. J. Phys. Chem. A. 113, 5397-5405 (2009).
  43. Hong, X., Tai-chang, Z., Li-dong, Z., Qi, F. Identification of Intermediates in Pyridine Pyrolysis with Molecular-beam Mass Spectrometry and Tunable Synchrotron VUV Photoionization. Chin. J. Chem. Phys. 22, 204 (2009).
  44. Li, Y., Qi, F. Recent Applications of Synchrotron VUV Photoionization Mass Spectrometry: Insight into Combustion Chemistry. Acc. Chem. Res. 43, 68-78 (2010).
  45. Tranchida, P. Q., Purcaro, G., Dugo, P., Mondello, L., Purcaro, G. Modulators for comprehensive two-dimensional gas chromatography. TrAC, Trends Anal. Chem. 30, 1437-1461 (2011).
  46. Yan, X. Sulfur and nitrogen chemiluminescence detection in gas chromatographic analysis. J. Chromatogr. A. 976, 3-10 (2002).
  47. Özel, M. Z., Hamilton, J. F., Lewis, A. C. New Sensitive and Quantitative Analysis Method for Organic Nitrogen Compounds in Urban Aerosol Samples. Environ. Sci. Technol. 45, 1497-1505 (2011).
  48. Kocak, D., Ozel, M. Z., Gogus, F., Hamilton, J. F., Lewis, A. C. Determination of volatile nitrosamines in grilled lamb and vegetables using comprehensive gas chromatography – Nitrogen chemiluminescence detection. Food Chem. 135, 2215-2220 (2012).
  49. Dijkmans, T., et al. Production of bio-ethene and propene: alternatives for bulk chemicals and polymers. Green Chem. 15, 3064-3076 (2013).
  50. Pyl, P. S., et al. Biomass to olefins: Cracking of renewable naphtha. Chem. Eng. J. 176-177, 178-187 (2011).
  51. Schietekat, M. C., et al. Catalytic Coating for Reduced Coke Formation in Steam Cracking Reactors. Ind. Eng. Chem. Res. 54, 9525-9535 (2015).
  52. Dietz, W. A. Response Factors for Gas Chromatographic Analyses. J. Chromatogr. Sci. 5, 68-71 (1967).
  53. Dierickx, J. L., Plehiers, P. M., Froment, G. F. On-line gas chromatographic analysis of hydrocarbon effluents: Calibration factors and their correlation. J. Chromatogr. A. 362, 155-174 (1986).
  54. Beens, J., Janssen, H. G., Adahchour, M., Brinkman, U. A. T. Flow regime at ambient outlet pressure and its influence in comprehensive two-dimensional gas chromatography. J. Chromatogr. A. 1086, 141-150 (2005).
  55. Schoenmakers, P. J., Oomen, J. L. M. M., Blomberg, J., Genuit, W., van Velzen, G. Comparison of comprehensive two-dimensional gas chromatography and gas chromatography – mass spectrometry for the characterization of complex hydrocarbon mixtures. J. Chromatogr. A. 892, 29-46 (2000).
  56. Agilent Tech. . Agilent Sulfur Chemiluminescence Detector and Nitrogen Chemiluminescence Detector. Specification Guide. , (2006).
  57. Agilent Tech. . Nitrosamine Analysis by Gas Chromatography and Agilent 255 Nitrogen Chemiluminescence Detector (NCD). Technical Overview. , (2007).
  58. Agilent Tech. . Agilent Model 255 Nitrogen Chemiluminescence Detector (NCD) Analysis of Adhesive Samples Using the NCD. Technical Overview. , (2007).
  59. Griffith, F. J., Winniford, W. L., Sun, K., Edam, R., Luong, C. J. A reversed-flow differential flow modulator for comprehensive two-dimensional gas chromatography. J. Chromatogr. A. 1226, 116-123 (2012).

Play Video

Citar este artigo
Ristic, N. D., Djokic, M. R., Van Geem, K. M., Marin, G. B. On-line Analysis of Nitrogen Containing Compounds in Complex Hydrocarbon Matrixes. J. Vis. Exp. (114), e54236, doi:10.3791/54236 (2016).

View Video