Summary

探测ç<sub> 84</sub> - 嵌入式硅衬底利用扫描探针显微镜和分子动力学

Published: September 28, 2016
doi:

Summary

This paper reports the nanomaterial fabrication of a fullerene Si substrate inspected and verified by nanomeasurements and molecular dynamic simulation.

Abstract

本文的阵列设计Ç84 -嵌入式Si衬底捏造使用受控的自组装方法中的超高真空室的报告。的C- 84的特性-嵌入式Si表面,如原子分辨率地形,态本地电子密度,带隙能量,场发射性能,纳米机械刚度,以及表面磁性,使用各种表面分析技术下超进行了检查,在高真空(UHV)条件下,以及在一个大气压的系统。实验结果表明的C- 84的高度均匀性-嵌入式Si表面捏造使用受控的自组装纳米机制,表示场发射显示器(FED),光电器件制造,微机电系统的应用的一个重要发展切削工具,并在努力找到硬质合金半导体合适的替代者。分子动力学(MD)方法,半经验潜力b用于研究的ç84纳米压痕ê -嵌入式硅衬底。执行MD模拟详细描述这里提出。对MD模拟的力学分析,如压痕力,杨氏模量,表面硬度,原子应力,应变原子的综合研究的细节都包括在内。压痕模型的基本应力和冯·米塞斯应变分布可以计算出监测与原子级别时间评估变形机制。

Introduction

富勒烯分子和它们包含有纳米材料之间独特的,由于其优异的结构特点,电子传导性,机械强度,化学性能1-4复合材料。这些材料已被证明在一个范围内的领域,如电子,电脑,燃料电池技术,太阳能电池,以及场致发射技术5,6非常有益的。

在这些材料中,碳化硅(SiC)纳米粒子的复合材料已经受到了特别的关注由于它们的宽带隙,高导热性和稳定性,高电击穿能力,和化学惰性。这些好处是在光电器件特别明显,金属氧化物半导体场效应晶体管(MOSFET),发光二极管(LED),和高功率,高频率,和高温应用。然而,高密度的缺陷通常conventi的表面上观察到的Onal地区碳化硅可以对电子结构的不利影响,甚至导致器件失效7,8。尽管碳化硅的应用程序已自1960年以来研究的事实,这个特殊的未解决的问题仍然存在。

本研究的目的是一个C 84的制造-嵌入式Si衬底异质结和随后的分析,得到所得到的材料的电子,光电,机械,磁性,和场发射性能的全面理解。我们还讨论通过数值模拟来预测纳米材料的特性,通过分子动力学计算得到新的应用的问题。

Protocol

注:本文概述在一个半导体衬底的表面上的自组装富勒烯阵列的形成中使用的方法。具体地讲,我们提出了用作微电子机械系统(MEMS),以及在高温,高功率光电器件,应用的场致发射体或基底富勒烯嵌入硅衬底的制备的新方法,以及在高-频率器件9-13。 在Si衬底1的制作六角形封闭封装(HCP)加铺结构Ç84 准备清洁的Si(111)基板主体的Si衬底的R…

Representative Results

Ç84分子的无序的Si(111)面A单层使用受控的自组装过程中一个超高真空腔室制造图1示出了一系列通过UHV-STM不同程度的覆盖率的测量地形图像:(一) 0.01毫升,(b)0.2毫升,(C)0.7毫升,和(d)0.9毫升。的C 84嵌入Si衬底的电子和光学性质使用各种表面分析技术,如STM和PL( 图2)还研究。得到的样品的优异材料性质证明纳米技术可以如何用于物质在atom…

Discussion

在这项研究中,我们证明Ç84的Si衬底上的自组装单层的通过新颖的退火工艺的制造( 图1)。这个方法也可以用于制备其它种类的纳米颗粒的嵌埋半导体基板。的C 84 -嵌入式Si衬底,其特征在用UHV-STM( 图2),场发射光谱仪,光致发光光谱,MFM和SQUID( 图3)的原子比例。

对应的C- 84纳米力学性能( ?…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank the Ministry of Science and Technology of Taiwan, for their financial support of this research under Contract Nos. MOST-102-2923-E-492- 001-MY3 (W. J. Lee) and NSC-102- 2112-M-005-003-MY3 (M. S. Ho). Support from the High-performance Computing of Taiwan in providing huge computing resources to facilitate this research is also gratefully acknowledged.

Materials

Silicon wafer Si(111) Type/Dopant: P/Boron  Resistivity: 0.05-0.1 Ohm.cm
Carbon,C84 Legend Star C84 powder, 98%
Hydrochloric acid Sigma-Aldrich 84422 RCA,37%
Ammonium Choneye Pure Chemical RCA,25%
Hydrogen peroxide Choneye Pure Chemical RCA,35%
Nitrogen  Ni Ni Air high-pressure bottle,95%
Tungsten Nilaco 461327 wire, diameter 0.3 mm, tip
Sodium hydroxide UCW 85765 etching Tungsten wire for tip,
Acetone Marcon Fine Chemicals 99920 suitable for liquid chromatography and UV-spectrophotometry
Methanol Marcon Fine Chemicals 64837 suitable for liquid chromatography and UV-spectrophotometry
UHV-SPM JEOL Ltd JSPM-4500A Ultrahigh Vacuum Scanning Tunneling Microscope and Ultrahigh Vacuum Atomic Force Microscope
Power supply  Keithley  237 High-Voltage Source-Measure Unit
SQUID Quantum desigh MPMS-7 Magnetic field strength: ± 7.0 Tesla, Temperature range: 2 ~ 400 K, Magnetic-dipole range:5 × 10^-7 ~ 300 emu
ALPS National Center for High-performance Computing, Taiwan Advanced Large-scale Parallel Supercluster, 177Tflops; 25,600 CPU cores; 73,728 GB RAM; 1074 TB storage

Referências

  1. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., Smalley, R. E. C60: Buckminsterfullerene. Nature. 318, 162-163 (1985).
  2. Zhu, Z. P., Gu, Y. D. Structure of carbon caps and formation of fullerenes. Carbon. 34, 173-178 (1996).
  3. Margadonna, S., et al. Crystal Structure of the Higher Fullerene C84. Chem. Mater. 10, 1742-1744 (1998).
  4. Diederich, F., et al. The Higher Fullerenes: Isolation and Characterization of C76, C84, C90, C94, and C70O, an Oxide of D5h-C70. Science. 252, 548-551 (1991).
  5. Lv, Z., Deng, Z., Xu, D., Li, X., Jia, Y. Efficient organic light-emitting diodes with C60 buffer layer. Displays. 30, 23-26 (2009).
  6. Tokunaga, K. On the difference in electronic properties between fullerene C60 and C60X2. Chem. Phys. Lett. 476, 253-257 (2009).
  7. Basa, D. K., Smith, F. W. Annealing and crystallization processes in a hydrogenated amorphous Si—C alloy film. Thin Solid Films. 192, 121-133 (1990).
  8. Neudeck, P. G., Powell, J. A. Performance limiting micropipe defects in silicon carbide wafers. IEEE Electron Device Lett. 15, 63-65 (1994).
  9. Huang, C. P., Su, C. C., Ho, M. S. Intramolecular Structures of C60 and C84 Molecules on Si(111)-7×7 Surfaces by Scanning Tunneling Microscopy. Appl. Surf. Sci. 254, 7712-7717 (2008).
  10. Huang, C. P., Su, C. C., Su, W. S., Hsu, C. F., Ho, M. S. Nano-measurements of electronic and mechanical properties of fullerene embedded Si(111) surfaces. Appl. Phys. Lett. 97, 061908 (2010).
  11. Huang, C. P., Hsu, C. F., Ho, M. S. Investigation of Fullerene Embedded Silicon Surfaces with Scanning Probe Microscopy. J. Nanosci. Nanotechnol. 10, 7145-7148 (2010).
  12. Huang, C. P., Su, W. S., Su, C. C., Ho, M. S. Characteristics of Si(111) surface with embedded C84 molecules. RSC Adv. 3 (111), 9234-9239 (2013).
  13. Ho, M. S., Huang, C. P. Method of forming self-assembled and uniform fullerene array on surface of substrate. US Patent. , (2015).
  14. Plimpton, S. J. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys. 117, 1-19 (1995).
  15. Su, W. S., et al. Using a functional C84 monolayer to improve the mechanical properties and alter substrate deformation. RSC Adv. 5, 47498-47505 (2015).
  16. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO- the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).
  17. Tersoff, J. New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56, 632 (1986).
  18. Stuart, S. J., Tutein, A. B., Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. Journal of Chemical Physics. 112, 6472 (2000).
  19. Rapaport, D. C. . The Art of Molecular Dynamics Simulations. , (1997).
  20. Chandra, N., Namilae, S., Shet, C. Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects. Phys. Rev. B. 69, 094101 (2004).
  21. Honeycutt, J. D., Andersen, H. C. Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters. J. Phys. Chem. 91, 4950 (1987).
  22. Schulz, M. J., Kelkar, A. D., Sundaresan, M. J. . Nanoengineering of Structural, Functional and Smart Materials. , 736 (2005).
  23. Ju, S. P., Wang, C. T., Chien, C. H., Huang, J. C., Jian, S. R. The Nanoindentation Responses of Nickel Surfaces with Different Crystal Orientations. Molecular Simulation. 33, 905-917 (2007).
  24. Mishin, Y., Suzuki, A., Uberuaga, B. P., Voter, A. F. Stick-slip behavior of grain boundaries studied by accelerated molecular dynamics. Phys. Rev. B. 75, (2007).

Play Video

Citar este artigo
Ho, M., Huang, C., Tsai, J., Chou, C., Lee, W. Probing C84-embedded Si Substrate Using Scanning Probe Microscopy and Molecular Dynamics. J. Vis. Exp. (115), e54235, doi:10.3791/54235 (2016).

View Video