Summary

表征和被动采样的应用在农药水监测

Published: August 03, 2016
doi:

Summary

A protocol about the characterization and application of five different passive sampling devices is presented.

Abstract

五种不同的水被动采样进行实验室条件下校准124遗产的测量和当前使用的农药。这项研究提供了被动采样准备,校准,提取方法和仪器分析的协议。采样率(R S)和被动采样水分配系数(K PW)分别计算硅橡胶,极性有机化工综合采样POCIS-A,POCIS-B,SDB-RPS和C 18盘。所选化合物的摄取取决于它们的物理化学性质, ,硅橡胶表现出对更疏水的化合物更好的摄取(登录辛醇-水分配系数(K OW)> 5.3),而POCIS-A,POCIS-B和SDB- RPS盘更适合亲水性化合物(1o9 OW <0.70)。

Introduction

农药不断引入到水生环境,并可能对水生生物1的风险。通常由于在流或偶发输入( 例如 ,沉淀,合并的下水道溢出污水泻湖释放)2的波动进行在水性环境农药监测采用抓斗采样,但是,这种取样技术不能完全解释的浓度的时间变化,3。因此,监测的方法需要与杀虫剂相关的环境风险的更好的估计加以改进。被动采样允许在一段时间以最少的基础设施和低污染物浓度4,5-长时间连续监测。

被动采样已被证明是在地下水6的监测,淡水7-10,废水11和海水12的宝贵工具。除了监控的目的<suP> 13,14,被动采样器也已用于非目标分析15,毒理学试验16,17,并且作为替代sediment-和生物监测18。被动采样水不断积聚的化学品和提供时间加权平均(TWA)的浓度14。污染物的吸收取决于采样速率(R S)和被动采样-水分配系数(K PW),它依赖于被动采样设计,采样器材料,污染物的物理化学性质,和环境条件( 例如 ,水湍流,温度)13,14,19,20。

详细的视频旨在展示如何校准和应用被动采样器在水中的农药。具体目标包括我),以使用五种不同类型的被动SAMPL的124个别农药进行准备,提取和仪器分析器,包括硅橡胶,极性有机化学综合采样(POCIS)-A,POCIS-B,SDB-RPS和C 18磁盘,ⅱ)以评估R 5K PW用于在实验室摄取研究的杀虫剂,以及iii)来演示如何选择感兴趣和如何计算TWA浓度对于各个被动采样的目标化合物相应的被动采样器。

参考标准和被动采样装置

目标化合物包括124遗留和目前使用的杀虫剂,包括除草剂,杀虫剂和杀真菌剂( 表1)。内部标准混合物(IS混合物)包括fenoprop(2,4,5-TP),可尼丁-D 3,乙硫磷和特丁-D 5。其他使用的化学品包括甲醇(MeOH),乙腈(ACN),丙酮(ACE)二氯甲烷(DCM),环己烷(CH),乙酸乙酯(EA),石油等她的(PE),2-丙醇,25%氨水溶液,乙酸(醋酸)和甲酸(FA)。五种不同的被动采样装置进行了表征,包括硅橡胶,POCIS-A和POCIS-B,SDB-RPS和C 181,21。

表1.被动采样器的采样率(R'S,L-1),采样-水分配系数(K'PW,L千克-1),用于浓度的野外样品个别在计算方程(方程) 杀虫剂 。 (从色谱A的1405,卢茨阿伦斯,Atlasi Daneshvar,安娜E.刘珍妮第六,别上五个被动采样器件表征转载于水,1-11版权所有(2015)农药监测,经许可爱思唯尔)22 请点击此处下载此文件。

Protocol

1.被动采样设计和准备 硅橡胶板 切断的硅橡胶片材英寸(600 mm×600毫米,厚0.5毫米)到使用不锈钢刀和使用不锈钢盲铆钉连接它们(3.2毫米×10毫米为2.5毫米×600毫米和2.5毫米×314毫米条纹)用铆钉枪,以获得2.5毫米×914毫米(表面积=457厘米2,吸着剂的质量= 15.6Hz克,体积共取样的条带大小=22.9厘米3)。 放置硅橡胶在Soxhlet装置的提取室。加?…

Representative Results

五种不同的被动采样技术124遗产的摄取和当前使用的农药,包括硅橡胶( 图1),POCIS A,POCIS B,SDB-RPS和C 18盘( 图2)进行比较。提取方法和仪器分析的性能得到了优化。实验室摄取实验的结果可用于计算R'S和登录K'PW的值的基础上为各个杀虫剂( 图3)的摄取信息( 见表1)。?…

Discussion

在质量控制方面,作为标准程序,实验室空白,检测(LOD),回收率和重复性的限制进行了检查23。在低浓度水平空白样本中检测到一些农药。检测限被设置为最低点的符合的信号的标准来3.信噪比平均检测限为8.0皮克绝对注入对硅橡胶,1.7皮克绝对为POCIS-A,1.6柱校正曲线上的值皮克绝对的POCIS-B,3.0皮克绝对的SDB-RPS磁盘和1.6皮克绝对对C盘18。所有浓度通过加标校正IS混合物。基于…

Declarações

The authors have nothing to disclose.

Acknowledgements

The Swedish EPA (Naturvårdsverket) (agreement 2208-13-001) and Centre for Chemical Pesticides (CKB) are gratefully acknowledged for funding this project. We thank Märit Peterson, Henrik Jernstedt, Emma Gurnell and Elin Paulsson at the OMK-lab, SLU, for skillful assistance with analytical support and supply of pesticide standards.

Materials

Methanol Merck Millipore 1.06035.2500
Acetonitrile Merck Millipore 1.00029.2500 
Acetone Merck Millipore 1.00012.2500
2-propanol Merck Millipore 1.00272.2500
Dichloromethane Merck Millipore 1.06054.2500
Ammoniak Merck Millipore 1.05428.1000 Purity 25%
Formic acid Sigma-Aldrich 94318-50ML-F Purity ~98%
Ethyl acetate  Sigma-Aldrich 31063-2.5L for pesticide residue analysis
Petroleum ether  Sigma-Aldrich 34491-4X2.5L for pesticide residue analysis
Acetic acid  Sigma-Aldrich 320099-500ML Purity ≥99.7%
Cyclohexane  Fisher Chemicals C/8933/17 for residue analysis
Empty polypropylene SPE Tube with PE frits, 20 μm porosity, volume 6 mL Supelco 57026
Empore SPE Disks, C18, diam. 47 mm Supelco 66883-U Passive sampler
Empore SPE Disks, SDB-RPS (Reversed-Phase Sulfonate), diam. 47 mm Supelco 66886-U  Passive sampler
POCIS-A  EST POCIS-HLB Passive sampler
POCIS-B EST POCIS-Pesticide  Passive sampler
Polyethersulfone (PES) membranes EST PES
Silicone rubber sheet Altec 03-65-4516 Passive sampler
Agilent 5975C Agilent Technologies 5975C GC-MS
HP-5MS UI J&W Scientific HP-5MS Analytical column for GC-MS
Agilent 6460 Agilent Technologies 6460 HPLC-MS/MS
Strata C18–E, 20 x 2 mm id and 20–25 μm particle size Phenomenex Strata C18–E Online SPE column for LC-MS/MS
Strata X, 20 x 2 mm id and 20–25 μm particle size Phenomenex Strata X Online SPE column for LC-MS/MS
Zorbax Eclipse Plus C18 Agilent Technologies Zorbax Eclipse Plus C18 Analytical column for LC-MS/MS
Isolute phase separator, 25 mL Biotage 120-1907-E
Stainless steel blind rivet, 3.2×10 mm Ejot & Avdel 951222

Referências

  1. Rodney, S. I., Teed, R. S., Moore, D. R. J. Estimating the toxicity of pesticide mixtures to aquatic organisms: A review. Hum. Ecol. Risk Assess. 19 (6), 1557-1575 (2013).
  2. Kreuger, J. Pesticides in stream water within an agricultural catchment in southern Sweden, 1990-1996. Sci. Total Environ. 216 (3), 227-251 (1998).
  3. Carlson, J. C., Challis, J. K., Hanson, M. L., Wong, C. S. Stability of pharmaceuticals and other polar organic compounds stored on polar organic chemical integrative samplers and solid-phase extraction cartridges. Environ. Toxicol. Chem. 32 (2), 337-344 (2013).
  4. Alvarez, D. A., et al. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ. Toxicol. Chem. 23 (7), 1640-1648 (2004).
  5. Vrana, B., et al. Passive sampling: An effective method for monitoring seasonal and spatial variability of dissolved hydrophobic organic contaminants and metals in the Danube river. Environ. Pollut. 184, 101-112 (2014).
  6. Dougherty, J. A., Swarzenski, P. W., Dinicola, R. S., Reinhard, M. Occurrence of herbicides and pharmaceutical and personal care products in surface water and groundwater around Liberty Bay, Puget Sound, Washington. J. Environ. Qual. 39 (4), 1173-1180 (2010).
  7. Muñoz, I., Martìnez Bueno, M. J., Agüera, A., Fernández-Alba, A. R. Environmental and human health risk assessment of organic micro-pollutants occurring in a Spanish marine fish farm. Environ. Pollut. 158 (5), 1809-1816 (2010).
  8. Wille, K., et al. Rapid quantification of pharmaceuticals and pesticides in passive samplers using ultra high performance liquid chromatography coupled to high resolution mass spectrometry. J. Chromatogr. A. 1218 (51), 9162-9173 (2011).
  9. Poulier, G., et al. Estimates of pesticide concentrations and fluxes in two rivers of an extensive French multi-agricultural watershed: application of the passive sampling strategy. Environ. Sci. Pollut. Res. 22 (11), 8044-8057 (2015).
  10. Moschet, C., Vermeirssen, E. L. M., Singer, H., Stamm, C., Hollender, J. Evaluation of in-situ calibration of chemcatcher passive samplers for 322 micropollutants in agricultural and urban affected rivers. Water Res. 71, 306-317 (2015).
  11. Petty, J. D., et al. An approach for assessment of water quality using semipermeable membrane devices (SPMDs) and bioindicator tests. Chemosphere. 41 (3), 311-321 (2000).
  12. Metcalfe, C. D., et al. Contaminants in the coastal karst aquifer system along the Caribbean coast of the Yucatan Peninsula, Mexico. Environ. Pollut. 159 (4), 991-997 (2011).
  13. Allan, I. J., et al. Field performance of seven passive sampling devices for monitoring of hydrophobic substances. Environ. Sci. Technol. 43 (14), 5383-5390 (2009).
  14. Vrana, B., et al. Passive sampling techniques for monitoring pollutants in water. TrAC – Trend. Anal. Chem. 24 (10), 845-868 (2005).
  15. Allan, I. J., Harman, C., Ranneklev, S. B., Thomas, K. V., Grung, M. Passive sampling for target and nontarget analyses of moderately polar and nonpolar substances in water. Environ. Toxicol. Chem. 32 (8), 1718-1726 (2013).
  16. Escher, B. I., et al. Evaluation of contaminant removal of reverse osmosis and advanced oxidation in full-scale operation by combining passive sampling with chemical analysis and bioanalytical tools. Environ. Sci. Technol. 45, 5387-5394 (2011).
  17. Pesce, S., Morin, S., Lissalde, S., Montuelle, B., Mazzella, N. Combining polar organic chemical integrative samplers (POCIS) with toxicity testing to evaluate pesticide mixture effects on natural phototrophic biofilms. Environ. Pollut. 159 (3), 735-741 (2011).
  18. Booij, K., Smedes, F., Van Weerlee, E. M., Honkoop, P. J. C. Environmental monitoring of hydrophobic organic contaminants: The case of mussels versus semipermeable membrane devices. Environ. Sci. Technol. 40 (12), 3893-3900 (2006).
  19. Harman, C., Allan, I. J., Vermeirssen, E. L. M. Calibration and use of the polar organic chemical integrative sampler-a critical review. Environ. Toxicol. Chem. 31 (12), 2724-2738 (2012).
  20. Jonker, M. T. O., Der Heijden, S. A. V. a. n., Kotte, M., Smedes, F. Quantifying the effects of temperature and salinity on partitioning of hydrophobic organic chemicals to silicone rubber passive samplers. Environ. Sci. Technol. 49 (11), 6791-6799 (2015).
  21. Jansson, C., Kreuger, J. Multiresidue analysis of 95 pesticides at low nanogram/liter levels in surface waters using online preconcentration and high performance liquid chromatography/tandem mass spectrometry. J. AOAC Int. 93 (6), 1732-1747 (2010).
  22. Ahrens, L., Daneshvar, A., Lau, A. E., Kreuger, J. Characterization of five passive sampling devices for monitoring of pesticides in water. J. Chromatogr. A. 1405, 1-11 (2015).
  23. Royston, P. Approximating the Shapiro-Wilk W-test for non-normality. Stat. Comput. 2 (3), 117-119 (1992).
  24. Gauthier, T. D. Detecting trends using Spearman’s rank correlation coefficient. Environ. Forensics. 2 (4), 359-362 (2001).
  25. Morin, N., Miège, C., Coquery, M., Randon, J. Chemical calibration, performance, validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic environments. TrAC – Trend. Anal. Chem. 36, 144-175 (2012).
  26. . Water Quality – Sampling – Part 23: Guidance on Passive Sampling in Surface Waters. ISO 5667-23:2011. , (2011).
  27. Morin, N., Camilleri, J., Cren-Olivé, C., Coquery, M., Miège, C. Determination of uptake kinetics and sampling rates for 56 organic micropollutants using “pharmaceutical” POCIS. Talanta. 109, 61-73 (2013).
check_url/pt/54053?article_type=t

Play Video

Citar este artigo
Ahrens, L., Daneshvar, A., Lau, A. E., Kreuger, J. Characterization and Application of Passive Samplers for Monitoring of Pesticides in Water. J. Vis. Exp. (114), e54053, doi:10.3791/54053 (2016).

View Video