Summary

在免疫细胞在不同组织与疾病相关的分布和小鼠实验评价性自身免疫性脑脊髓炎的诱导

Published: May 08, 2016
doi:

Summary

This manuscript describes the methods for induction and scoring of the experimental autoimmune encephalomyelitis (EAE) model, together with the assessment of immune cell distribution and mRNA cytokine levels in lymph nodes, spleen, blood and spinal cord using flow cytometry and quantitative PCR, respectively, at various disease phases.

Abstract

多发性硬化症是推定为炎症性自身免疫疾病,它在中枢神经系统(CNS),导致认知和运动功能障碍的特征是病变的形成。实验性自身免疫性脑脊髓炎(EAE)是MS的有用的动物模型,是因为它的特征还在于通过损伤形成在CNS,运动功能障碍,并且也由自身免疫和炎性反应驱动。一项所述的EAE模型被诱导与来自髓鞘少突胶质蛋白(MOG)35-55小鼠衍生的肽。在EAE小鼠制定一个渐进的病程。这当然分为三个阶段:临床前阶段(第0天 – 9),疾病发作(10天 – 11)和急性期(12天 – 14)。 MS和EAE是由渗透到中枢神经系统自身反应性T细胞诱导。这些T细胞分泌趋化因子和细胞因子而导致进一步的免疫细胞的募集。因此,在脊髓D中的免疫细胞的分布uring这三种疾病的阶段进行了研究。以突出的T细胞,B细胞和单核细胞的活化/增殖/累积开始时的疾病的时间点,在淋巴结,脾和血液中的免疫细胞的分布也被评估。此外,一些细胞因子(IL-1β,IL-6,IL-23,TNFα,IFNγ)的三种疾病相的水平进行测定,以深入了解该疾病的炎性过程。最后,该数据提供了免疫细胞的EAE病理过程中的功能信息的概述。

Introduction

多发性硬化症(MS)及其相应的动物模型,实验性自身免疫性脑脊髓炎(EAE),显示出在中枢神经系统(CNS)的自身免疫性神经炎症的变化。早期主动MS和EAE的病变被浸润免疫细胞的存在表征。 MS的病因至今不明,但市场普遍认为涉及髓鞘由自身反应性T细胞介导的​​破坏。这些自身反应性T细胞分泌促炎性细胞因子和趋化因子,以吸引其他免疫细胞诸如B细胞,单核细胞和嗜中性粒细胞从循环。单核细胞分化成巨噬细胞。由自身反应性T细胞分泌干扰素γ(IFNγ)的极化将巨噬细胞促炎巨噬细胞。促进少突胶质细胞的细胞凋亡的促炎性巨噬细胞释放细胞因子和活性氧。少突胶质细胞的死亡导致脱髓鞘。此外,B细胞分化为plasma细胞和针对髓鞘释放的自身抗体,最终导致髓鞘退化。髓鞘的丧失导致轴突和神经元的退化和由此在CNS代表MS 1的主要特征的病变部位的形成。在外围,T细胞和B细胞中的淋巴结被激活,它们在脾增殖并通过循环迁移到中枢神经系统。单核细胞和嗜中性粒细胞增殖的骨髓和也通过循环迁移到中枢神经系统。

从骨髓,脾和淋巴结进入血液或从血流进入CNS白细胞外渗是一个多步骤的过程,依赖于几个因素,包括白细胞和内皮趋化因子和趋化因子受体介导的分子间的相互作用。由各种细胞类型产生的趋化因子可免疫reactio期间被诱导通过像肿瘤坏死因子α(TNFα),IFNγ和白细胞介素-6(IL-6),随后募集免疫细胞炎症2,3的部位的细胞因子Ñ。免疫细胞呈现在其表面上的趋化因子受体的子集,这取决于细胞类型和迁移途径的炎症部位。因此,CXCR2,CCR1和CXCR1是在骨髓和血液4成熟嗜中性粒细胞中表达,和它的配体,CXCL2,CCL5或CXCL6结合,分别激活嗜中性粒细胞,并促进其粘附到内皮和随后的细胞的迁移进入组织5-9。 CCL2和CCL20吸引单核细胞和Th1 / Th17细胞10,其分别表示CCR2 11和CCR6 12。 CCR1和CCR5,通过不同的细胞类型,包括T细胞,单核细胞和巨噬细胞13表示,结合CCL3,CCL5和CCL7和MS 14期间上调。 CXCR3表达于T细胞结合CCL9,CCL10和CCL11 15。

以MS治疗的一个主要策略是免疫细胞的耗竭或预防免疫细胞浸润进入CNS。因此,具体的趋化因子受体的阻断已经在EAE影响。拮抗或CCR1 16,CCR2 17的基因缺失,CCR7 18或CXCR2 19降低EAE病理学,而拮抗或CCR1 20的基因缺失,CCR5 20或CXCR3 21没有降低的病理学。因此,具体的趋化因子受体的白细胞上表达为后者的浸润进入CNS关键和决定EAE的过程。

免疫细胞的耗竭为MS患者的有效治疗策略,因为渗透免疫细胞释放细胞因子,如TNFα,IL-6和IL-1β,这反过来,促进炎症过程或神经元22的降解。此外,自动反应性Th1细胞释放IFNγ,这反过来又刺激巨噬细胞释放的TNFα,IL-1β和IL-23。

这个手稿描述的EAE,免疫细胞分布以及在EAE小鼠的各种组织中的细胞因子水平(mRNA)的测定的诱导。细胞在不同时间点的疾病过程中被分离,以提供所述炎性过程并最终导致在CNS损伤形成的时间依赖性的概述。

Protocol

道德守则:我们的实验过程由Regierungspräsidium达姆施塔特(德国)的伦理委员会批准并确认国家和欧洲法规。所有作出了努力,以尽量减少动物的痛苦,减少使用动物的数量。 1. EAE模型 EAE模型的感应使用10至13周龄的雌性129S4 / SvJae×C57BL / 6小鼠为EAE的诱导。 给小鼠皮下注射,到上部和下背部,所述致脑炎MOG 35 – 55(髓鞘少突胶质糖蛋白)的肽(200?…

Representative Results

图1给出了本文中介绍的不同方法的示意图1)小鼠接受MOG 35-55抗原注射后10.7±0.3天28开发初期临床症状。 EAE小鼠的代表性疾病过程示于图1。2)各种组织(脾,淋巴结,脊髓)和血液从在不同时间点的控制和EAE小鼠中的临床前阶段(第2天,4天萃取6天),该疾病的发病过程中(10天)和在疾病(12天,14天?…

Discussion

这里所描述的EAE模型得到最多关注,MS的模式,并在测试的治疗策略为MS 32是经常使用。鼠标疾病具有MS的许多临床和组织学特征,是由自身免疫诱导神经元抗原引起的。致敏髓鞘抗原与血脑屏障功能障碍,因此,免疫细胞浸润到中枢神经系统有关。我们的研究结果显示,免疫细胞在急性期淋巴结瞬时增加。脾T细胞和B细胞减少的疾病的临床前阶段。在循环血液,T细胞,B细胞,树突细胞和?…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Else Kröner-Fresenius Foundation (EKFS) Research Training Group Translational Research Innovation – Pharma (TRIP) and by the “Landesoffensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz (LOEWE), Schwerpunkt: Anwendungsorientierte Arzneimittelforschung” of the State of Hesse.

Materials

ABI Prism 7500 Sequence Detection System  Applied Biosystems, Austin, USA quantitative PCR system
Accutase Sigma Aldrich Munich, Germany A6964 cell detachment solution
CD3-PE-CF594 BD, Heidelberg, Germany 562286
CD4-V500 BD, Heidelberg, Germany 560782
CD8-eFluor650 eBioscience, Frankfurt, Germany 95-0081-42
CD11b-eFluor605 eBioscience, Frankfurt, Germany 93-0112-42
CD11c-AlexaFluor700 BD, Heidelberg, Germany 560583
CD19-APC-H7  BD, Heidelberg, Germany 560143
CD45-Vioblue  Miltenyi Biotec, Bergisch Gladbach, Germany 130-092-910
CompBeads BD, Heidelberg, Germany 552843 compensation beads
Collagenase A Sigma Aldrich Munich, Germany C0130
Cytometric absolute count standard  Polyscience, Eppelheim, Germany BLI-580-10
Cytometer Setup and Tracking beads  BD, Heidelberg, Germany 642412
DNase I Sigma Aldrich Munich, Germany D5025
EAE Kit Hooke Laboratories, Lawrence, USA EK2110
F4/80-PE-Cy7  BioLegend, Fell, Germany 123114
First Strand cDNA-Synthesis kit  Thermo Scientific, Schwerte, Germany K1612
Fc receptor-1 blocking buffer  Miltenyi Biotec, Bergisch Gladbach, Germany 130-092-575
Flow cytometric absolute count standard Polyscience, Eppelheim, Germany 580
FlowJo software v10  Treestar, Ashland, USA flow cytometry software
LSRII/Fortessa  BD, Heidelberg, Germany flow cytometer
Ly6G-APC-Cy7  BD, Heidelberg, Germany 560600
Lysing solution  BD, Heidelberg, Germany 349202
Maxima SYBR Green  Thermo Scientific, Schwerte, Germany K0221 fluorescent DNA binding dye 
RNeasy Mini Kit  Qiagen, Hilden, Germany 74104 RNA extraction kit

Referências

  1. McFarland, H. F., Martin, R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol. 8, 913-919 (2007).
  2. Proudfoot, A. E. Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol. 2, 106-115 (2002).
  3. Mihara, M., Hashizume, M., Yoshida, H., Suzuki, M., Shiina, M. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond). 122, 143-159 (2012).
  4. Strydom, N., Rankin, S. M. Regulation of circulating neutrophil numbers under homeostasis and in disease. J Innate Immun. 5, 304-314 (2013).
  5. Kerstetter, A. E., Padovani-Claudio, D. A., Bai, L., Miller, R. H. Inhibition of CXCR2 signaling promotes recovery in models of multiple sclerosis. Exp Neurol. 220, 44-56 (2009).
  6. Kolaczkowska, E., Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 13, 159-175 (2013).
  7. Fan, X., et al. Murine CXCR1 is a functional receptor for GCP-2/CXCL6 and interleukin-8/CXCL8. J Biol Chem. 282, 11658-11666 (2007).
  8. Hartl, D., et al. Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. J Immunol. 181, 8053-8067 (2008).
  9. Barcelos, L. S., et al. Role of the chemokines CCL3/MIP-1 alpha and CCL5/RANTES in sponge-induced inflammatory angiogenesis in mice. Microvasc Res. 78, 148-154 (2009).
  10. Wojkowska, D. W., Szpakowski, P., Ksiazek-Winiarek, D., Leszczynski, M., Glabinski, A. Interactions between neutrophils, Th17 cells, and chemokines during the initiation of experimental model of multiple sclerosis. Mediators Inflamm. , 590409 (2014).
  11. Bose, S., Cho, J. Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases. Arch Pharm Res. 36, 1039-1050 (2013).
  12. Mony, J. T., Khorooshi, R., Owens, T. Chemokine receptor expression by inflammatory T cells in EAE. Front Cell Neurosci. 8, 187 (2014).
  13. Katschke, K. J., et al. Differential expression of chemokine receptors on peripheral blood, synovial fluid, and synovial tissue monocytes/macrophages in rheumatoid arthritis. Arthritis Rheum. 44, 1022-1032 (2001).
  14. Trebst, C., et al. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am J Pathol. 159, 1701-1710 (2001).
  15. Karin, N., Wildbaum, G. The role of chemokines in adjusting the balance between CD4+ effector T cell subsets and FOXp3-negative regulatory T cells. Int Immunopharmacol. , (2015).
  16. Rottman, J. B., et al. Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur J Immunol. 30, 2372-2377 (2000).
  17. Izikson, L., Klein, R. S., Charo, I. F., Weiner, H. L., Luster, A. D. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med. 192, 1075-1080 (2000).
  18. Kuwabara, T., et al. CCR7 ligands are required for development of experimental autoimmune encephalomyelitis through generating IL-23-dependent Th17 cells. J Immunol. 183, 2513-2521 (2009).
  19. Liu, L., et al. Myelin repair is accelerated by inactivating CXCR2 on nonhematopoietic cells. J Neurosci. 30, 9074-9083 (2010).
  20. Matsui, M., et al. Treatment of experimental autoimmune encephalomyelitis with the chemokine receptor antagonist Met-RANTES. J Neuroimmunol. 128, 16-22 (2002).
  21. Liu, L., et al. Severe disease, unaltered leukocyte migration, and reduced IFN-gamma production in CXCR3-/- mice with experimental autoimmune encephalomyelitis. J Immunol. 176, 4399-4409 (2006).
  22. Lee, M., Suk, K., Kang, Y., McGeer, E., McGeer, P. L. Neurotoxic factors released by stimulated human monocytes and THP-1 cells. Brain Res. 1400, 99-111 (2011).
  23. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. J Vis Exp. , (2012).
  24. O’Connor, R. A., et al. Adjuvant immunotherapy of experimental autoimmune encephalomyelitis: immature myeloid cells expressing CXCL10 and CXCL16 attract CXCR3+CXCR6+ and myelin-specific T cells to the draining lymph nodes rather than the central nervous system. J Immunol. 188, 2093-2101 (2012).
  25. Olesch, C., et al. MPGES-1-derived PGE2 suppresses CD80 expression on tumor-associated phagocytes to inhibit anti-tumor immune responses in breast cancer. Oncotarget. 6, 10284-10296 (2015).
  26. Chomczynski, P., Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 162, 156-159 (1987).
  27. Livak, K. J., Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25, 402-408 (2001).
  28. Barthelmes, J., et al. Lack of ceramide synthase 2 suppresses the development of experimental autoimmune encephalomyelitis by impairing the migratory capacity of neutrophils. Brain Behav Immun. 46, 280-292 (2015).
  29. Schiffmann, S., et al. Ceramide synthase 6 plays a critical role in the development of experimental autoimmune encephalomyelitis. J Immunol. 188, 5723-5733 (2012).
  30. Schiffmann, S., et al. PGE2/EP4 signaling in peripheral immune cells promotes development of experimental autoimmune encephalomyelitis. Biochem Pharmacol. 87, 625-635 (2014).
  31. Giglio, S., Monis, P. T., Saint, C. P. Demonstration of preferential binding of SYBR Green I to specific DNA fragments in real-time multiplex PCR. Nucleic Acids Res. 31, e136 (2003).
  32. Vesterinen, H. M., et al. Improving the translational hit of experimental treatments in multiple sclerosis. Mult Scler. 16, 1044-1055 (2010).
  33. ‘t Hart, B. A., Gran, B., Weissert, R. EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med. 17, 119-125 (2011).
  34. Serada, S., et al. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 105, 9041-9046 (2008).
  35. Berer, K., et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 479, 538-541 (2011).
  36. Shetty, A., et al. Immunodominant T-cell epitopes of MOG reside in its transmembrane and cytoplasmic domains in EAE. Neurol Neuroimmunol Neuroinflamm. 1, 22-22 (2014).
  37. Schmitz, K., et al. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice. EMBO Mol Med. 6, 1398-1422 (2014).
  38. Procaccini, C., De Rosa, V., Pucino, V., Formisano, L., Matarese, G. Animal models of Multiple Sclerosis. Eur J Pharmacol. 759, 182-191 (2015).
  39. Pollinger, B., et al. Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med. 206, 1303-1316 (2009).
  40. Rodriguez, M., Oleszak, E., Leibowitz, J. Theiler’s murine encephalomyelitis: a model of demyelination and persistence of virus. Crit Rev Immunol. 7, 325-365 (1987).
  41. Lipton, H. L. Theiler’s virus infection in mice: an unusual biphasic disease process leading to demyelination. Infect Immun. 11, 1147-1155 (1975).
  42. Matsushima, G. K., Morell, P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol. 11, 107-116 (2001).
  43. El-behi, M., Rostami, A., Ciric, B. Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol. 5, 189-197 (2010).
  44. Mann, M. K., Ray, A., Basu, S., Karp, C. L., Dittel, B. N. Pathogenic and regulatory roles for B cells in experimental autoimmune encephalomyelitis. Autoimmunity. 45, 388-399 (2012).
  45. Lassmann, H., Bruck, W., Lucchinetti, C. F. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 17, 210-218 (2007).
  46. Simmons, S. B., Pierson, E. R., Lee, S. Y., Goverman, J. M. Modeling the heterogeneity of multiple sclerosis in animals. Trends Immunol. 34, 410-422 (2013).
  47. Praet, J., Guglielmetti, C., Berneman, Z., Vander Linden, A., Ponsaerts, P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev. 47, 485-505 (2014).

Play Video

Citar este artigo
Barthelmes, J., Tafferner, N., Kurz, J., de Bruin, N., Parnham, M. J., Geisslinger, G., Schiffmann, S. Induction of Experimental Autoimmune Encephalomyelitis in Mice and Evaluation of the Disease-dependent Distribution of Immune Cells in Various Tissues. J. Vis. Exp. (111), e53933, doi:10.3791/53933 (2016).

View Video