Summary

Isolering og karakterisering af enkeltceller fra zebrafisk embryoer

Published: March 12, 2016
doi:

Summary

This protocol describes a method for isolating single cells from zebrafish embryos, enriching for cells of interest, capturing zebrafish cells in microfluidic based single cell multiplex systems, and assessing gene expression from single cells.

Abstract

The zebrafish (Danio rerio) is a powerful model organism to study vertebrate development. Though many aspects of zebrafish embryonic development have been described at the morphological level, little is known about the molecular basis of cellular changes that occur as the organism develops. With recent advancements in microfluidics and multiplexing technologies, it is now possible to characterize gene expression in single cells. This allows for investigation of heterogeneity between individual cells of specific cell populations to identify and classify cell subtypes, characterize intermediate states that occur during cell differentiation, and explore differential cellular responses to stimuli. This study describes a protocol to isolate viable, single cells from zebrafish embryos for high throughput multiplexing assays. This method may be rapidly applied to any zebrafish embryonic cell type with fluorescent markers. An extension of this method may also be used in combination with high throughput sequencing technologies to fully characterize the transcriptome of single cells. As proof of principle, the relative abundance of cardiac differentiation markers was assessed in isolated, single cells derived from nkx2.5 positive cardiac progenitors. By evaluation of gene expression at the single cell level and at a single time point, the data support a model in which cardiac progenitors coexist with differentiating progeny. The method and work flow described here is broadly applicable to the zebrafish research community, requiring only a labeled transgenic fish line and access to microfluidics technologies.

Introduction

De fleste nuværende studier af cellebiologi og molekylær biologi er baseret på befolkningstal gennemsnit. Dog kan vigtige biologiske begivenheder blive maskeret af disse traditionelle populationsbaserede analyser, da mindre befolkninger kan spille vigtige roller i biologiske processer og resultater sygdom. Forståelse genekspression i heterogene populationer på enkelt celle niveau kan (og har) føre til relevante biologiske og kliniske indsigt 1,2. Af bekymring for embryonale udviklingsstudier, i en større population af celler, stamceller er ofte underrepræsenteret, hvilket gør det udfordrende at opdage subtile ændringer i genekspression, som i sidste ende initierer celle skæbne beslutninger 3. Tilsvarende kan en enkelt celletype have forskellige udtryk profiler i afhængighed af mikromiljøet 4. For eksempel residente endotelceller i samme organ eller i forskellige organer (f.eks., Aorta eller nyrer) udviser signifikant heterogenitet trods deling fælles MORPhological og funktionelle egenskaber 5. Desuden kan cancerceller befolker samme tumor også have varierende molekylære profiler eller mutationer på enkelt celle niveau 6.

I modelsystemer har transcriptomics i enkeltceller med succes identificeret nye cellepopulationer, kendetegnet mellemliggende tilstande, der opstår under celledifferentiering og afslørede differentielle cellulære responser på stimuli 7,8,9. Sådanne indsigter ville have været maskeret i konventionelle populationsbaserede studier. Zebrafisk embryoner er en uhyre underudnyttet kilde til stamceller, stamfader, og differentiere celler til at udforske spørgsmål om enkelt celle heterogenitet og molekylær regulering af cellulære identiteter under udvikling. Deres yderst stereotype, ex vivo udvikling og nem genetisk manipulation gør dem til et fremragende modelsystem for denne fremgangsmåde 10,11. Specielt har en væsentlig begrænsning for fortolkning af enkelt celle gene udtryk data er, at pålidelig identifikation af nye mellemliggende celle stater under udvikling kræver meget omhyggelig timing af væv samling 9. Dette er nødvendigt for at sikre, at heterogenitet mellem opfangede celler repræsenterer heterogenitet inden et væv på et enkelt tidspunkt i stedet for heterogenitet i genekspression præsenteret af aldersbetinget celledifferentiering. Sammenlignet med mus, kan zebrafisk embryo udvikling præcist synkroniseret på et stort antal embryoner 12. Derudover, med stor kobling størrelser, zebrafisk embryoer kan anvendes som en rigelig kilde til stamceller og progenitorceller.

Denne protokol beskriver en fremgangsmåde til isolering af celler fra zebrafisk embryoner og fange enkeltceller ved anvendelse af et kommercielt tilgængeligt integreret kredsløb mikrofluidik (IFC) chip og autopræp for QRT-PCR-genekspression analyse. Denne protokol kan være hurtigt overføres til enhver high throughput multiplexing analyser, herunder heletranskriptom sekvensering, der giver mere omfattende analyse af cellulær heterogenitet 13. Det giver også flere fordele til traditionelle genekspression assays. Den enkelt celle isolation protokol giver høj levedygtighed efter FACS, som nedsætter andelen af ​​inficerede celler, der er inkluderet i efterfølgende anvendelser. Ved at bruge en IFC kan indfangede celler direkte observeret at evaluere opsamlingsprocent og vurdere celle sundhed morfologisk. Desuden denne protokol er bredt anvendelig til zebrafisk forskningsverden, som kun kræver en mærket transgene fisk linje og adgang til mikrofluide celle capture teknologi.

Som bevis på princippet blev enkelte celler afledt af hjerte-progenitorer isoleret og fanget på en IFC-chip, og derefter den relative forekomst af hjerte- differentieringsmarkører blev målt ved QRT-PCR. Genekspression analyse på enkelt celle niveau viser, at hjerte-stamfædre sameksistere med deres Forskelntiating afkom. Den indsigt erfaringer fra encellede profilering af hjerte stamfædre kan kaste lys over heterogenitet i genekspression mønstre blandt hjerte-stamceller under hvirveldyr udvikling, som kan være blevet maskeret i traditionelle populationsbaserede analyser.

Protocol

Denne protokol kræver brug af levende, voksne zebrafisk til at producere embryoer. De embryoner høstes til væv samling. Det er vigtigt at indhente godkendelse fra relevante etik anmeldelse boards til at gennemføre dette eksperiment. 1. Få Gradvise Embryoner Dagen før eksperimentet, tilberede sund, voksen zebrafisk til avl. Placer en han og en hun på modsatte sider af en klar skillelinje i en avl tank. Gentag 1.1 for så mange ynglende tanke som er nødvendige for …

Representative Results

Som bevis på princippet blev genekspression vurderes at udforske differentiering dynamik under hjerte-udvikling. I zebrafisk, opstår kardiale progenitorer fra en mesodermal population af celler, der migrerer til den forreste lateral plade mesoderm hvor de smelter til dannelse af den lineære hjerte røret. Før fusion, hjerte- progenitorer begynde at udtrykke transkriptionsfaktoren Nkx2.5 (NK2 homeobox 5), som menes at være den tidligste specifik markør for hjerte-progenitor…

Discussion

Den heri beskrevne fremgangsmåde anvender ekspression af et fluorescerende protein under kontrol af en celletypespecifik promotor til berigelse af en population af kardiale progenitorceller fra zebrafisk embryoner til anvendelse i mikrofluid assisteret enkelt celle capture system til at vurdere ekspression af en undergruppe af kardiale gener i enkelt celler. Forudsat at FACS laser excitation og emission kapaciteter er forenelige med fluoroforen (e) valg, kan denne fremgangsmåde anvendes til enhver fluorescerende repor…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank Dr. C. Geoffrey Burns for fish stock. The authors are grateful to UNC Flow Cytometry Core Facility, UNC-CGIBD AAC core for resources enabling this project, and the ZAC facility for animal care. L.S. is supported by NIH T32 grant HL069768-13 (PI, Nobuyo Maeda). N.F. is supported by NSF Graduate Research Fellowship NSF-DGE-1144081. This study was supported by NIH P30DK034987 grant (to UNC Advanced Analytics Core), American Heart Association Scientist Development Grant 13SDG17060010 and Ellison Medical Foundation New Scholar Grant AG-NS-1064-13 (to Dr. Qian), and NIH R00 HL109079 grant (to Dr. Liu).

Materials

Supplies
Dumont #5 forceps Fine Science Tools 11254-20 For removing the chorion from embryos
Microcentrifuge tube 2 mL GeneMate C-3261-1
40 um cell strainer Biobasic SP104151
35 mm culture dish Falcon 351008
FACS tubes topped with 35 um cell strainer Falcon 352235
P1000 and tips Rainin 17005089
P20 and tips Rainin 17005091
IFC chip manufacturer's protocol Fluidigm 100-6117 Version 100-6117 E1 was used in representative experiment
Wide bore pastuer glass pippette VWR 14673-010 For transferring embryos
Adult wild type zebrafish N/A We used AB line
Adult transgenic zebrafish N/A We used Tg(nkx2.5:ZsYellow)
Name Company Catalog Number Comments
Reagents for cell dissociation
Double distilled water N/A
Instant Ocean Sea Salt Instant Ocean SS15-10
NaCl FisherScientific S271-3 make stock in water and use for de-yolking buffer
KCl Sigma Aldrich P5405 make stock in water and use for de-yolking buffer
NaHCO3 Sigma Aldrich S6014 make stock in water and use for de-yolking buffer
Leibovitz's L-15 Gibco 21083-027
FBS FisherScientific 03-600-511 Heat inactivate; any brand of FBS should be fine
Cell Dissociation Reagent 1 -TrypLE Life Technologies 12605-010 Store at room temperature.
Cell Dissociation Reagent 2 – FACSmax Genlantis T200100 Store -20; thaw on ice; bring to room temp before use
pronase (optional) Sigma P5147
L/D Dye – Sytox Blue Life Technologies S34857 Any live/dead stain suitable for flow cytometry will work
Trypan Blue Gibco 15250-061
Name Company Catalog Number Comments
Reagents for IFC plate use and qRT-PCR
Gene-specific probes Probes will vary by experiment
TaqMan Probe ef1a Life Technologies Dr03432748_m1
TaqMan Probe gata4 Life Technologies Dr03443262_g1
TaqMan Probe nk2-5 Life Technologies Dr03074126_m1
TaqMan Probe myl7 Life Technologies Dr03105700_m1
TaqMan Probe vmhc Life Technologies Dr03431136_m1
TaqMan Probe isl1 Life Technologies Dr03425734_m1
TaqMan Gene Expression Master Mix Life Technologies 4369016
Reagents listed in IFC manufacturer's protocol
C1 Reagent Kit Fluidigm 100-5319 Reagents for loading cells onto IFC plate
Ambion Single Cell-to-CTTM Life Technologies 4458237 Reagents for reverse transcription and pre-amplification steps
Molecular Biology Quality Water Corning 46-000CM
C1 IFC for PreAmp (5-10 um) Fluidigm 100-5757 IFC plate for small cells
Name Company Catalog Number Comments
Equipment
C1 AutoPrep machine Fluidigm 100-5477 For IFC plate use
Hemocytometer  Sigma Aldrich Z359629 For counting cells and assessing cell size
Dissecting microscope For removing embryos from chorion
Tissue culture microscope For assessing single cell digestion
FACS machine For isolating cells of interest

Referências

  1. Speicher, M. R. Single-cell analysis: toward the clinic. Genome medicine. 5, (2013).
  2. Macaulay, I. C., Voet, T. Single cell genomics: advances and future perspectives. PLoS genetics. 10, e1004126 (2014).
  3. Marco, E., et al. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proceedings of the National Academy of Sciences of the United States of America. 111, 5643-5650 (2014).
  4. Yin, H., Marshall, D. Microfluidics for single cell analysis. Current opinion in biotechnology. 23, 110-119 (2012).
  5. Garlanda, C., Dejana, E. Heterogeneity of endothelial cells. Specific markers. Arteriosclerosis, thrombosis, and vascular biology. 17, 1193-1202 (1997).
  6. Diaz-Cano, S. J. Tumor heterogeneity: mechanisms and bases for a reliable application of molecular marker design. International journal of molecular sciences. 13, 1951-2011 (2012).
  7. Guo, G., et al. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell stem cell. 13, 492-505 (2013).
  8. Guo, G., et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Developmental cell. 18, 675-685 (2010).
  9. Treutlein, B., et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 509, 371-375 (2014).
  10. Kimmel, C. B. Genetics and early development of zebrafish. Trends in genetics : TIG. 5, 283-288 (1989).
  11. Liu, J., Stainier, D. Y. Zebrafish in the study of early cardiac development. Circulation research. 110, 870-874 (2012).
  12. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists. 203, 253-310 (1995).
  13. Zhao, S., Fung-Leung, W. P., Bittner, A., Ngo, K., Liu, X. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PloS one. 9, e78644 (2014).
  14. McCall, M. N., McMurray, H. R., Land, H., Almudevar, A. On non-detects in qPCR data. Bioinformatics. 30, 2310-2316 (2014).
  15. Schmittgen, T. D., Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nature. 3, 1101-1108 (2008).
  16. Lyons, I., et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes & development. 9, 1654-1666 (1995).
  17. Chen, J. N., Fishman, M. C. Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development. 122, 3809-3816 (1996).
  18. Zhou, Y., et al. Latent TGF-beta binding protein 3 identifies a second heart field in zebrafish. Nature. 474, 645-648 (2011).
  19. Paffett-Lugassy, N., et al. Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis. Nature cell biology. 15, 1362-1369 (2013).
  20. McCurley, A. T., Callard, G. V. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC molecular biology. 9, 102 (2008).
  21. Tang, R., Dodd, A., Lai, D., McNabb, W. C., Love, D. R. Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta biochimica et biophysica Sinica. 39, 384-390 (2007).
  22. Serbedzija, G. N., Chen, J. N., Fishman, M. C. Regulation in the heart field of zebrafish. Development. 125, 1095-1101 (1998).
  23. de Pater, E., et al. Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development. 136, 1633-1641 (2009).
  24. Hami, D., Grimes, A. C., Tsai, H. J., Kirby, M. L. Zebrafish cardiac development requires a conserved secondary heart field. Development. 138, 2389-2398 (2011).
  25. Yelon, D., Horne, S. A., Stainier, D. Y. Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Developmental biology. 214, 23-37 (1999).
  26. Molina, N., et al. Stimulus-induced modulation of transcriptional bursting in a single mammalian gene. Proceedings of the National Academy of Sciences of the United States of America. 110, 20563-20568 (2013).

Play Video

Citar este artigo
Samsa, L. A., Fleming, N., Magness, S., Qian, L., Liu, J. Isolation and Characterization of Single Cells from Zebrafish Embryos. J. Vis. Exp. (109), e53877, doi:10.3791/53877 (2016).

View Video