Summary

Transkriptom profilering<em> In-vivo</em> Produceret Bovine præimplantationsembryoner Brug To farve Microarray Platform

Published: January 30, 2017
doi:

Summary

Microarray technology allows quantitative measurement and gene expression profiling of transcripts on a genome-wide basis. Therefore, this protocol provides an optimized technical procedure in a two-color custom made bovine array using Day 7 bovine embryos to demonstrate the feasibility of using low amount of total RNA.

Abstract

Early embryonic loss is a large contributor to infertility in cattle. Moreover, bovine becomes an interesting model to study human preimplantation embryo development due to their similar developmental process. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. Microarray technology allows quantitative measurement and gene expression profiling of transcript levels on a genome-wide basis. One of the main decisions that have to be made when planning a microarray experiment is whether to use a one- or two-color approach. Two-color design increases technical replication, minimizes variability, improves sensitivity and accuracy as well as allows having loop designs, defining the common reference samples. Although microarray is a powerful biological tool, there are potential pitfalls that can attenuate its power. Hence, in this technical paper we demonstrate an optimized protocol for RNA extraction, amplification, labeling, hybridization of the labeled amplified RNA to the array, array scanning and data analysis using the two-color analysis strategy.

Introduction

Tidlig embryonale tab i høje-producerende malkekøer er en af de største udfordringer i mejeriindustrien 1, 2. Bovin er blevet en interessant model til at studere human preimplantation embryo udvikling på grund af deres lignende udviklingsproces 3, 4. Men der kræves mere forskning for at få en bedre forståelse om gener involveret i kvæg tidlig fosterudvikling.

Efter tyve år siden den første microarray teknologi udviklet i 1995 5, udvikling af mere sofistikerede sonde fabrikation teknologi reducerede trykfejl og variabilitet-chips inden for og mellem forskellige microarray platforme 6. Forbedret microarray teknologi resulterede i en udbredt anvendelse af denne teknologi i klinisk forskning 7 og senest i begyndelsen af embryo qVALITET vurdering 8.

Den store mængde af nødvendige materiale til microarray teknologi er den vigtigste grund til, at microarray teknologi oprindeligt undladt at indtaste en række forskningsfelter såsom tidlige fosterudvikling. For nylig er RNA amplifikationsmetoder blevet forbedret til lineært amplificere RNA op til mikrogram niveau fra sub-nanogram udgangsmateriale RNA materiale 9. Der er flere kommercielle RNA forstærkning kits til rådighed på markedet; imidlertid er mere populære veludviklede kits relateret til Ribo-Single Primer Isoterm Amplification 10 og T7 promoter drevet 11 metoder. Den mest populære antisense-RNA-amplifikation anvender in vitro transkription med en oligo dT primer linker til en T7-promotor ved 5'-enden 12. Denne teknologi gør det muligt at opretholde den mest repræsentative anti-sense udskrifter efter lineær forstærkning feller arrays hybridisering 13. Denne metode er blevet indrettet til at forstærke picogram niveau af totalt RNA ekstraheret fra bovin embryo 8.

Universal Linkage System (ULS) er mærkningen metode, som direkte inkorporerer DNA eller forstærkede RNA med platin-linked fluorescerende farvestof enten Cyanin 547 eller Cyanin 647, ved at danne en koordinerende obligation på N7-positionen i guanin 14. Denne fremgangsmåde blev tilpasset med embryoner forskning for at generere mere stabilt amplificeret aRNA uden ændringer i forhold til aminoallyl modificeret aRNA genereret ved enzymatisk metode 15. Både enkelt farvestof og to farvestoffer mærkning metoder er blevet tilpasset ved hjælp af Universal Linkage System i microarray. En stor microarray sammenligninger undersøgelsen var, at der er en god korrelation af datakvaliteten mellem en- og to-farvet array-platforme 6.

For nylig, både T7-promotor-drevetn antisense RNA amplifikation og ULS mærkning metoder er blevet udviklet til at give en mere pålidelig protokol til at generere en tilstrækkelig mængde af høj kvalitet mærket Arna materialer til microarray hybridisering 8, 16. Derfor er denne undersøgelse giver en protokol til at demonstrere nogle af de vigtige skridt fra RNA ekstraktion til dataanalyse involveret i tofarvede microarray hjælp Dag 7 bovine embryoner som eksempel.

Protocol

Dyret del af denne undersøgelse blev udført på det metaboliske Forskningsenheden for University of Alberta, Edmonton, Canada, med alle animalske eksperimentelle procedurer godkendt (Protokol # AUP00000131) ved University of Alberta Animal Care og brug Udvalg, og dyr passet efter til den canadiske Råd Animal Care retningslinjer (1993). 1. Embryo Produktion, Isolering af Total RNA og DNase Behandling For dyr eksperimentelle protokoller og embryonindsamlingsteam refererer i vores tidligere udgivelser…

Representative Results

Et repræsentativt resultat af total RNA og amplificeret aRNA fra dag 7 bovine embryoner er vist i figur 3 og opsummeret i tabel 1. RNA integritet og profil kan vurderes efter RNA ekstraktion. Kvalitetsvurdering af RNA kunne ske ved Bioanalyzer instrument (figur 3A) og kun de prøver med RIN værdi højere end 7,0 er kvalificeret til at blive anvendt til amplifikation …

Discussion

Det første problem at udføre microarray analyse ved hjælp Dag 7 bovine embryoner er ikke at få tilstrækkelige mængder af høj kvalitet RNA til at studere genekspression. Traditionelle phenol / chloroform RNA ekstraktion og ethanolfældning metode anbefales ikke til dag 7 embryoner, hvilket resulterer i lavt udbytte og mulige sidesten phenol hæmme RNA amplifikationsreaktion. I stedet en standard kolonne-baserede metode er bedre at isolere total RNA og derefter eluere RNA'et med minimum elueringsbuffer at forø…

Declarações

The authors have nothing to disclose.

Acknowledgements

Research supported by Alberta Livestock and Meat Agency, Alberta Innovates – BioSolutions, Alberta Milk, and Livestock Research Branch, Alberta Agriculture and Forestry.

Materials

PicoPure RNA Isolation Kit Applied Biosystems KIT0204
RNase-Free DNase Set (50) Qiagen 79254
Agilent RNA 6000 Pico Kit Agilent Technologies 5067-1513
Arcturus RiboAmp HS PLUS Kit Applied Biosystems KIT0505
2100 Bioanalyzer Instruments Agilent Technologies G2940CA
RNA Screen Tape Agilent Technologies 5067-5576
ULS Fluorescent Labeling Kit Kreatech Diagnostics EA-021
Custom Gene Expression Microarrays Agilent Technologies G2514F
 Agilent Gene Expression wash buffer 1 Agilent Technologies Part #5188-5325
Agilent Gene Expression wash buffer 2 Agilent Technologies Part #5188-5326
2X Hi-RPM Hybridization buffer Agilent Technologies  Part #5190-0403
25X Fragment buffer Agilent Technologies Part #5185-5974
10X GE Blocking Agent Agilent Technologies Part #5188-5281
Stabilization and drying solution Agilent Technologies  Part #5185-5979
Gasket slides enabled by Agilent SureHyb techonolgy Agilent Technologies G2524-60012 Pack of 20 gasket slides, 4 microarrays/slide
Two-Color RNA Spike-In Kit Agilent Technologies  Cat# 5188-5279
GenePix 4000B array scanner Molecular Devices GENEPIX 4000B-U
Ozone Free Box BioTray OFB_100x200
GAL file Agilent Technologies

Referências

  1. Royal, M. D., Smith, R. F., Friggens, N. C. Fertility in dairy cows: bridging the gaps. Animal. 2 (08), 1101-1103 (2008).
  2. Diskin, M. G., Murphy, J. J., Sreenan, J. M. Embryo survival in dairy cows managed under pastoral conditions. Anim. Reprod. Sci. 96 (3-4), 297-311 (2006).
  3. Wrenzycki, C., et al. Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum. Reprod. 16 (5), 893-901 (2001).
  4. Menezo, Y. J., Herubel, F. Mouse and bovine models for human IVF. Reprod. Biomed. Online. 4 (2), 170-175 (2002).
  5. Schena, M., Shalon, D., Davis, R. W., Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270 (5235), 467-470 (1995).
  6. Patterson, T. A., et al. Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat. Biotechnol. 24 (9), 1140-1150 (2006).
  7. Rhodes, D. R., Chinnaiyan, A. M. Integrative analysis of the cancer transcriptome. Nat. Genetics. 37, 31-37 (2005).
  8. Robert, C., et al. Combining resources to obtain a comprehensive survey of the bovine embryo transcriptome through deep sequencing and microarrays. Mol. Reprod. Dev. 78 (9), 651-664 (2011).
  9. Nygaard, V., Hovig, E. Options available for profiling small samples: a review of sample amplification technology when combined with microarray profiling. Nucleic Acids Res. 34 (3), 996-1014 (2006).
  10. Kurn, N., Chen, P., Heath, J. D., Kopf-Sill, A., Stephens, K. M., Wang, S. Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clin Chem. 51 (10), 1973-1981 (2005).
  11. Van Gelder, R. N., von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D., Eberwine, J. H. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. 87 (5), 1663-1667 (1990).
  12. Phillips, J., Eberwine, J. H. Antisense RNA Amplification: A linear amplification method for analyzing the mRNA population from single living cells. Methods. 10 (3), 283-288 (1996).
  13. Gilbert, I., Scantland, S., Dufort, I., Gordynska, O., Labbe, A., Sirard, M. A., Robert, C. Real-time monitoring of aRNA production during T7 amplification to prevent the loss of sample representation during microarray hybridization sample preparation. Nucleic Acids Res. 37 (8), 65 (2009).
  14. Gijlswijk, R. P., Talman, E. G., Jansse, P. J., Snoeijers, S. S., Killian, J., Tanke, H. J., Heetebrij, R. J. Universal Linkage System: versatile nucleic acid labeling technique. Expert Re. Mol. Diagn. 1 (1), 81-91 (2001).
  15. Gilbert, I., Scantland, S., Sylvestre, E. L., Dufort, I., Sirard, M. A., Robert, C. Providing a stable methodological basis for comparing transcript abundance of developing embryos using microarrays. Mol. Hum. Reprod. 16 (8), 601-616 (2010).
  16. Tsoi, S., et al. Development of a porcine (Sus scofa) embryo-specific microarray: array annotation and validation. BMC Genomics. 13, 370 (2012).
  17. Salehi, R., et al. Superovulatory response and embryo production in Holstein cows fed diets enriched in oleic, linoleic or α-linolenic acid. Reprod. Fertil. Dev. 26 (1), 218-218 (2013).
  18. Thangavelu, G., Colazo, M. G., Ambrose, D. J., Oba, M., Okine, E. K., Dyck, M. K. Diets enriched in unsaturated fatty acids enhance early embryonic development in lactating Holstein cows. Theriogenology. 68 (7), 949-957 (2007).
  19. . Agilent 2100 Bioanalyzer User’s Guide Available from: https://www.agilent.com/cs/library/usermanuals/Public/G2946-90004_Vespucci_UG_eBook_(NoSecPack) (2016)
  20. Kerr, K. F. Extended analysis of benchmark datasets for Agilent two-color microarray. BMC Bioinformatics. 8, 371 (2007).
  21. Zhu, Q., Miecznikowski, J. C., Halfon, M. S. A wholly defined Agilent microarray spike-in dataset. Bioinformatics. 27 (9), 1284-1289 (2011).
  22. Vallee, M., Gravel, C., Palin, M. F., Reghenas, H., Stothard, P., Wishart, D. S., Sirard, M. A. Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species. Biol. Reprod. 73 (1), 63-71 (2005).
  23. Thomas, P. D., et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13 (9), 2129-2141 (2003).
  24. Mi, H., et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res. 33, 284-288 (2005).
  25. Mi, H., Muruganujan, A., Casagrande, J. T., Thomas, P. D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551-1566 (2013).
  26. Ross, P. J., Wang, K., Kocabas, A., Cibelli, J. B. Housekeeping gene transcript abundance in bovine fertilized and cloned embryos. Cell Reprogram. 12 (6), 709-717 (2010).
  27. Gilbert, I., et al. The dynamics of gene products fluctuation during bovine pre-hatching development. Mol. Reprod. Dev. 76, 762-772 (2009).
  28. Vallee, M., et al. Revealing the bovine embryo transcript profiles during early in vivo embryonic development. Reproduction. 138 (1), 95-105 (2009).
  29. Dafforn, A., et al. Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis. Biotechniques. 37 (5), 854-857 (2004).
  30. Beaujean, N., Jammes, H., Jouneau, A., Dufort, I., Rovert, C., Sirard, M. A. Nuclear Reprogramming. Studying Bovine Early Embryo Transcriptome by Microarray. , (2015).
  31. Patterson, T. A., et al. Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat. Biotechnol. 24 (9), 1140-1150 (2006).

Play Video

Citar este artigo
Salehi, R., Tsoi, S. C., Colazo, M. G., Ambrose, D. J., Robert, C., Dyck, M. K. Transcriptome Profiling of In-Vivo Produced Bovine Pre-implantation Embryos Using Two-color Microarray Platform. J. Vis. Exp. (119), e53754, doi:10.3791/53754 (2017).

View Video