The recording of electroencephalogram (EEG) and electromyogram (EMG) in freely behaving mice is a critical step to correlate behavior and physiology with sleep and wakefulness. The experimental protocol described herein provides a cable-based system for acquiring EEG and EMG recordings in mice.
Recording of the epidural electroencephalogram (EEG) and electromyogram (EMG) in small animals, like mice and rats, has been pivotal to study the homeodynamics and circuitry of sleep-wake regulation. In many laboratories, a cable-based sleep recording system is used to monitor the EEG and EMG in freely behaving mice in combination with computer software for automatic scoring of the vigilance states on the basis of power spectrum analysis of EEG data. A description of this system is detailed herein. Steel screws are implanted over the frontal cortical area and the parietal area of 1 hemisphere for monitoring EEG signals. In addition, EMG activity is monitored by the bilateral placement of wires in both neck muscles. Non-rapid eye movement (Non-REM; NREM) sleep is characterized by large, slow brain waves with delta activity below 4 Hz in the EEG, whereas a shift from low-frequency delta activity to a rapid low-voltage EEG in the theta range between 6 and 10 Hz can be observed at the transition from NREM to REM sleep. By contrast, wakefulness is identified by low- to moderate-voltage brain waves in the EEG trace and significant EMG activity.
Os avanços técnicos, muitas vezes precipitado saltos quânticos na compreensão dos processos neurobiológicos. Por exemplo, a descoberta de Hans Berger em 1929 que potenciais elétricos gravados a partir do couro cabeludo humano tomou a forma de ondas senoidais, cuja frequência foi diretamente relacionada com o nível de vigília do sujeito, levou a avanços rápidos na compreensão de sono-vigília regulação, tanto em animais e humanos. 1 Para este dia o electroencephlogram (EEG), em conjunto com o eletromiograma (EMG), ie., a atividade elétrica produzida pelos músculos esqueléticos, representa os dados "espinha dorsal" de quase todas as experimental e clínica avaliação que visa correlacionar o comportamento e fisiologia com a actividade de neurónios corticais em comportando animais, incluindo os seres humanos. Na maior parte dos laboratórios de pesquisa de base de sono de EEG estas gravações são efectuadas por utilização de um sistema à base de cabo (Figura 1), em que d adquiridaATA é sujeito fora de linha com o padrão e o espectro de análise [por exemplo., a aplicação de uma transformada de Fourier rápida (FFT)] para determinar o estado de vigilância do objecto a ser gravado. 2, 3 sono consiste de movimento rápido dos olhos (REM) e não-REM (NREM). O sono REM é caracterizado por uma rápida baixa tensão EEG, o movimento dos olhos aleatório, e atonia muscular, um estado em que os músculos estão efetivamente paralisado. Sono REM é também conhecido como o sono paradoxal, porque a actividade cerebral assemelha-se do estado de vigília, enquanto que o corpo é em grande parte desconectada do cérebro e parece estar em sono profundo. Em contrapartida, os neurônios motores são estimulados durante o sono NREM, mas não há nenhum movimento do olho. NREM humano pode ser dividido em 4 etapas, sendo que a fase 4 é chamado de sono profundo ou sono de ondas lentas e é identificado por ondas cerebrais grandes e lentos com atividade delta entre 0,5-4 Hz no EEG. Por outro lado, uma subdivisão entre as fases de sono NREM, em pequenos animais, como os ratos de umaND ratinhos, não foi estabelecida, principalmente porque eles não têm períodos longos de sono consolidado como pode ser visto nos seres humanos.
Ao longo dos anos, e com base na interpretação do EEG, vários modelos de regulação do sono-vigília, ambos circuitos ou à base humoral, foram propostos. O neural e bases celulares da necessidade de sono ou, em alternativa, "movimentação do sono," continua por resolver, mas tem sido conceituada como uma pressão homeostática que constrói durante o período de vigília e é dissipada pelo sono. Uma teoria é que os fatores endógenos somnogenic acumular durante a vigília e que a sua acumulação gradual é a base de sono pressão homeostática. Enquanto a primeira hipótese formal de que o sono é regulado por fatores humorais foi creditado ao trabalho de Rosenbaum publicado em 1892 4, foi Ishimori 5, 6 e Pieron 7 que de forma independente, e mais de 100 anos atrás, demonstrou a existência de produtos químicos para promover o sono. Ambos os pesquisadores propuseram, e de fato provado, que as substâncias hipnogênicos ou 'hypnotoxins' estavam presentes no cerebral fluido espinhal (CSF) de cães privados de sono. 8 Ao longo do século passado várias substâncias hipnogênicos putativos adicionais implicados no processo homeostático do sono foram identificados (para revisão, ver ref. 9), incluindo prostaglandina (PG) D 2, 10 citocinas, 11 adenosina, anandamida 12, 13 e o péptido de urotensina II. 14
O trabalho experimental por Economo 15, 16, Moruzzi e Magoun 17, e outros nos resultados produzidos início e meados de século 20 que inspirou teorias baseados em circuitos de sono e vigília e, até certo ponto, ofuscou a teoria humoral então prevalecente de dorme. Até à data, vários "modelos de circuito" têm sido propostas, cada informados por dados de diferentes graus de qualidade e quantidade (para revisão, ver ref. 18). Um modelo, Por exemplo, propõe que o sono de ondas lentas é gerado através da inibição mediada por adenosina da libertação de acetilcolina a partir de neurónios colinérgicos no prosencéfalo basal, uma área constituídos com, principalmente, do núcleo do membro horizontal da banda diagonal de Broca e o inominata substância. 19 Outro modelo popular de regulação do sono / vigília descreve um mecanismo interruptor flip-flop com base em interações mutuamente inibitórios entre os neurônios indutores do sono na área pré-óptica ventrolateral e neurônios indutores de vigília no tronco hipotálamo e cérebro. 18, 20, 21 Além disso, para a comutação de entrada e saída de sono REM, uma interacção mutuamente inibidora semelhante foi proposta para as zonas no tronco cerebral, que é a cinza ventral periaquedutal, tegmento da ponte lateral e núcleo sublaterodorsal. 22 Em conjunto, estes modelos têm provado serem valiosos heurísticas e oferecidas estruturas interpretativas importantes para estudos de pesquisa do sono; no entanto, um yet mais completa compreensão dos mecanismos moleculares e circuitos que regulam o ciclo vigília-sono vai exigir um conhecimento mais completo de seus componentes. O sistema de registo polygraphic detalhado abaixo devem ajudar neste objetivo.
Este protocolo descreve um set-up para gravações de EEG / EMG que permite a avaliação de sono e vigília sob low-noise, condições de custo-eficazes e de alto rendimento. Devido ao pequeno tamanho do conjunto de cabeça de eléctrodo de EEG / EMG, este sistema pode ser combinado com outros implantes para experiências intra-cerebrais, incluindo Optogenetics (implante de fibra óptica) ou, em conjunto com a implantação da cânula simultânea, Microinfusion de drogas no rato cérebro. 31 Além disso, a c…
The authors have nothing to disclose.
We thank Dr. Larry D. Frye for editorial help with this manuscript. This work was supported by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research 24300129 (to M.L.), 25890005 (to Y.O.) and 26640025 (to Y.T.), the National Agriculture and Food Research Organization (to Y.U.), the World Premier International Research Center Initiative (WPI) from the Ministry of Education, Culture, Sports, Science, and Technology (to Y.O., Y.T., Y.U. and M.L.) and the Nestlé Nutrition Council, Japan (to M.L.).
4-pin header | Hirose | A3B-4PA-2DSA(71) | |
Ampicillin | Meiji Seika | N/A | |
Analog-to-digital converter | Contec | AD16-16U(PCIEV) | |
Caffeine | Sigma | C0750 | |
Carbide cutter | Minitor | B1055 | |
Crimp housing | Hirose | DF11-4DS-2C | |
Crimp socket | Hirose | DF11-30SC | |
Dental cement (Toughron Rebase) | Miki Chemical Product | N/A | |
Epoxy adhesive | Konishi | #16351 | |
FFC/FPC connector | Honda Tsushin Kogyo | FFC-10BMEP1(B) | |
Flat cable | Hitachi Cable | 20528-ST LF | |
Instant glue (Aron Alpha A) | Toagosei | N/A | |
Meloxicam | Boehringer Ingelheim | N/A | |
Pentobarbital | Kyoritsu Seiyaku | N/A | |
Signal amplifier | Biotex | N/A | |
Sleep recording chamber | APL | N/A | |
SleepSign software | Kissei Comtec | N/A | for EEG/EMG recording/analysis |
Slip ring | Biotex | N/A | |
Stainless steel screw | Yamazaki | N/A | φ1.0×2.0 |
Stainless steel wire | Cooner Wire | AS633 |