Summary

Imaging CD4 T-celle Interstitiel Migration i det betændte Dermis

Published: March 25, 2016
doi:

Summary

De mekanismer, der styrer det interstitielle motilitet af CD4-T-celler ved steder med inflammation er relativt ukendt. Vi præsenterer en ikke-invasiv metode til at visualisere og manipulere in vitro -primet CD4 T-celler i de inflammerede øre dermis, hvilket tillader undersøgelse af den dynamiske opførsel af disse celler in situ.

Abstract

Evnen af ​​CD4 T-celler til at udføre effektorfunktioner afhænger af hurtig og effektiv migration af disse celler i betændte perifere væv gennem en endnu udefineret mekanisme. Anvendelsen af ​​multifoton mikroskopi til studiet af immunsystemet tilvejebringer et værktøj til at måle dynamikken i immunresponser i intakte væv. Her præsenterer vi en protokol for ikke-invasiv intravital multifoton billeddannelse af CD4 T-celler i de betændte mus øre dermis. Brug af en tilpasset imaging platform og et venekateter muliggør visualisering af CD4 T-celle dynamik i den dermale interstitium, med evnen til at forespørge disse celler i realtid via tilsætning af blokerende antistoffer til centrale molekylære komponenter, der medvirker i motilitet. Dette system giver fordele i forhold til både in vitro modeller og kirurgisk invasive billeddiagnostiske procedurer. Forståelse af de veje, der bruges af CD4 T-celler til motilitet kan i sidste ende give indblik i de basic funktion af CD4 T-celler samt patogenesen af ​​både autoimmune sygdomme og patologi af kroniske infektioner.

Introduction

The effector function of CD4 T cells is critically dependent on their ability to rapidly enter and traverse a wide variety of peripheral tissues to survey for damage, locate foci of infection, or cause pathology from chronic infection or autoimmunity. While the processes of homing to inflamed sites1-4 and extravasation5-7 from the vasculature into tissues have been well-characterized, the factors that drive and regulate the interstitial motility of T cells remain undefined. The migration of T cells in complex 3D environments has been studied in vitro through the use of artificial matrices8-10 or microfluidic devices11,12, but these fail to recapitulate the complex and dynamic environment of an in vivo system. It is only recently, with the advent of high-resolution multi-color intravital imaging that it has become possible to study the dynamic behavior of immune cells in situ, allowing for a better understanding of intact immune responses.

Over a decade ago, several influential studies were published that first utilized multiphoton microscopy to address immunological questions. Early studies focused on the behavior of immune cells within explanted lymphoid organs13-16, which were soon followed by techniques to image exposed lymph nodes in anesthetized mice17. Imaging allowed for new fundamental observations about the stages of lymph node priming of T cells18, the mechanisms by which T cells migrate in secondary lymphoid organs19, T cell interactions with other immune cells20,21, and dynamic T cell positioning within the lymph node22. Although many early studies focused on lymph node dynamics, intravital imaging has been since been utilized to image the immune response in many peripheral tissues, including the brain23-25, liver26, lung27, and skin28-30.

The mouse ear dermis is particularly well poised for imaging, due to the thinness of ear skin, a relative lack of hair, and the ease with which it can be isolated from respiratory movements31. Indeed, the ear dermis has been used to image the interstitial behavior of dendritic cells32,33, T cells28,29,34,35, and neutrophils36,37, and is a well-established site for studying dermal inflammation. Increasingly, non-invasive procedures have been replacing surgical preparations of the skin, including split dermis38,39, flank39,40, or dorsal skin flap window39,41 models, that can induce changes to the local inflammatory milieu. The use of transferred, in vitro-primed, antigen-specific CD4 effector T cells allows for the study of a homogenous population of cells in the context of a dermal inflammatory response30. Here we describe a non-invasive imaging procedure that allows for the visualization of antigen-specific effector CD4 T cells in the dermal interstitium of the inflamed mouse ear, and the ability to manipulate these cells in real-time by introducing blocking antibodies through a venous catheter. We show that this model is effective for tracking the movement of CD4 T cells in the dermis and for querying the mechanisms that govern this motility.

Protocol

Alle procedurer, der involverer mus blev godkendt af Institutional Animal Care og brug Udvalg fra University of Rochester, og udføres i nøje overensstemmelse med dyreværnsloven Public Health Service Policy på Humane Pleje og anvendelse af forsøgsdyr og administreres af National Institutes Sundhedsstyrelsen, Kontoret for Laboratory Animal Welfare. 1. Fremstilling af Effector CD4 T-celler BEMÆRK: BALB / c TCR-transgene DO11.10 mus, der specifikt genkender et pe…

Representative Results

Evnen til at studere immunresponser in situ uden at ændre immun miljø er afgørende i at studere realtid interaktioner af T effektorceller med en betændt væv. Imaging af de intakte øre dermis af denne protokol, skitseret i figur 1A og B, giver mulighed for visualisering af overførte fluorescensmærkede T effektor celler i huden interstitium. Dette tillader både høj opløsning (figur 1C) og time-lapse (Figur 1D,</…

Discussion

Betydning

Her præsenterer vi en komplet protokol for 4D visualisering af overførte, antigen-specifikke effektor Th1 celler i de intakte mus øre dermis. Denne metode giver fordele i forhold til nogle aktuelle billeddiagnostiske modaliteter af flere grunde. Ved billeddannelse de ventrale øre dermis, er vi i stand til at give afkald hårfjerning, der er nødvendig for imaging-protokoller, der involverer andre hud sites. Selvom hårfjerningsmidler er generelt milde, har de vist sig …

Declarações

The authors have nothing to disclose.

Acknowledgements

Forfatterne takker University of Rochester multifotonexcitation Microscope Core facilitet for hjælp til direkte billedvisning. Støttet af NIH AI072690 og AI02851 til DJF; AI114036 til AG og AI089079 til MGO.

Materials

BALB/c mice Jackson Laboratories 000651 Mice used were bred in-house
DO11.10 mice Jackson Laboratories 003303 Mice used were bred in-house
HBSS Fisher 10-013-CV Multiple Equivalent
Newborn Calf Serum (NCS) Thermo/HyClone SH30118.03 Heat inactivated at 56 °C for 30 minutes
Guinea Pig Complement Cedarlane CL-5000
anti-CD8 antibody ATCC 3.155 (ATCC TIB-211) Antibodies derived from  this hybridoma
anti-MHC Class II antibody ATCC M5/114.15.2 (ATCC TIB-120) Antibodies derived from  this hybridoma
anti-CD24 antibody ATCC J11d.2 (ATCC TIB-183) Antibodies derived from  this hybridoma
anti-Thy1.2 antibody ATCC J1j.10 (ATCC TIB-184) Antibodies derived from  this hybridoma
Ficoll (Fico/Lite-LM) Atlanta Biologicals I40650
PBS Fisher 21-040-CV Multiple Equivalent
EDTA Fisher 15323591
biotinylated anti-CD62L antibody (clone MEL-14) BD 553149
streptavidin magnetic separation beads Miltenyi 130-048-101
MACS LS Separation Column Miltenyi 130-042-401
recombinant human IL-2 Peprotech 200-02
recombinant mouse IL-4 Peprotech 214-14
recombinant mouse IL-12 Peprotech 210-12
anti-IFNg antibody (clone XMG 1.2) eBioscience 16-7311-85
anti-IL-4 antibody (clone 11b11) eBioscience 16-7041-85
RPMI VWR 45000-412
Penicillin/Streptomycin Fisher 15303641
L-glutamine Fisher 15323671
2-mercaptoethanol Bio-Rad 161-0710
ovalbumin peptide Biopeptide ISQAVHAAHAEINEAGR-OH peptide
Fetal Calf Serum (FCS) Thermo/HyClone SV30014.03 Heat inactivated at 56 °C for 30 minutes
24-well culture plate LPS 3526 Multiple Equivalent
CFSE Life Technologies C34554
CMTMR Life Technologies C2927
28 G1/2 insulin syringes, 1ml BD 329420
28 G1/2 insulin syringes, 300μl BD 309301
27 G1/2 TB syringes, 1ml BD 309623
30 G1/2 needles BD 305106
PE-10 medical tubing BD 427400
cyanoacrylate veterinary adhesive (Vetbond) 3M 1469SB
heating plate WPI 61830
Heating plate controller WPI ATC-2000
Water blanket controller Gaymar TP500 No longer in production, newer equivalent available
water blanket Kent Scientific TP3E
Isoflurane vaporizer LEI Medical Isotec 4 No longer in production, newer equivalent available
isoflurane Henry Schein Ordered through Veterinary staff
microcentrifuge tubes VWR 20170-038 Multiple Equivalent
medical tape 3M 1538-0
isoflurane nosecone Built In-house, see Fig 2
imaging platform Built In-house, see Fig 2
curved forceps WPI 15915-G Multiple Equivalent
scissors Roboz RS-6802 Multiple Equivalent
glass coverslips VWR Multiple Equivalent
high vacuum grease Fisher 146355D
cotton swabs Multiple Equivalent
delicate task wipes Fisher 34155 Multiple Equivalent
Olympus Fluoview 1000 AOM-MPM upright microscope with Spectra-Physics MaiTai HP DeepSee Ti:Sa laser Olympus call for quote
optical table with vibration control Newport call for quote
25x NA 1.05 water immersion objective for multiphoton imaging Olympus XLPLN25XWMP2
objective heater Bioptechs PN 150815
Detection filter cube Olympus FV10-MRVGR/XR Proprietary cube, can be approximated from individual filters/dichroics
anti-integrin β1 antibody (clone hMb1-1) eBioscience 16-0291-85 Azide free, low endotoxin
anti-integrin β3 antibody (clone 2C9.G3) eBioscience 16-0611-82 Azide free, low endotoxin
Texas Red Dextran (70,000 MW) Life Technologies D-1830

Referências

  1. Denucci, C. C., Mitchell, J. S., Shimizu, Y. Integrin function in T-cell homing to lymphoid and nonlymphoid sites: getting there and staying there. Critical reviews in immunology. 29 (2), 87-109 (2009).
  2. Gehad, A., et al. Differing requirements for CCR4, E-selectin, and alpha4beta1 for the migration of memory CD4 and activated T cells to dermal inflammation. Journal of immunology. 189 (1), 337-346 (2012).
  3. Park, E. J., et al. Distinct roles for LFA-1 affinity regulation during T-cell adhesion, diapedesis, and interstitial migration in lymph nodes. Blood. 115 (8), 1572-1581 (2010).
  4. Masopust, D., Schenkel, J. M. The integration of T cell migration, differentiation and function. Nature reviews. Immunology. 13 (5), 309-320 (2013).
  5. Valignat, M. P., Theodoly, O., Gucciardi, A., Hogg, N., Lellouch, A. C. T lymphocytes orient against the direction of fluid flow during LFA-1-mediated migration. Biophysical journal. 104 (2), 322-331 (2013).
  6. Schon, M. P., Ludwig, R. J. Lymphocyte trafficking to inflamed skin–molecular mechanisms and implications for therapeutic target molecules. Expert opinion on therapeutic targets. 9 (2), 225-243 (2005).
  7. Nourshargh, S., Alon, R. Leukocyte migration into inflamed tissues. Immunity. 41 (5), 694-707 (2014).
  8. Friedl, P., Entschladen, F., Conrad, C., Niggemann, B., Zanker, K. S. CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize beta1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion. European journal of immunology. 28 (8), 2331-2343 (1998).
  9. Wolf, K., Muller, R., Borgmann, S., Brocker, E. B., Friedl, P. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood. 102 (9), 3262-3269 (2003).
  10. Lammermann, T., et al. Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood. 113 (23), 5703-5710 (2009).
  11. Jacobelli, J., et al. Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA-regulated adhesions. Nature immunology. 11 (10), 953-961 (2010).
  12. Jacobelli, J., Bennett, F. C., Pandurangi, P., Tooley, A. J., Krummel, M. F. Myosin-IIA and ICAM-1 regulate the interchange between two distinct modes of T cell migration. Journal of immunology. 182 (4), 2041-2050 (2009).
  13. von Andrian, U. H. Immunology. T cell activation in six dimensions. Science. 296 (5574), 1815-1817 (2002).
  14. Bousso, P., Bhakta, N. R., Lewis, R. S., Robey, E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science. 296 (5574), 1876-1880 (2002).
  15. Miller, M. J., Wei, S. H., Parker, I., Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science. 296 (5574), 1869-1873 (2002).
  16. Stoll, S., Delon, J., Brotz, T. M., Germain, R. N. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science. 296 (5574), 1873-1876 (2002).
  17. Miller, M. J., Wei, S. H., Cahalan, M. D., Parker, I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proceedings of the National Academy of Sciences of the United States of America. 100 (5), 2604-2609 (2003).
  18. Mempel, T. R., Henrickson, S. E., Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature. 427 (6970), 154-159 (2004).
  19. Woolf, E., et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nature immunology. 8 (10), 1076-1085 (2007).
  20. Bousso, P., Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nature immunology. 4 (6), 579-585 (2003).
  21. Henrickson, S. E., et al. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nature immunology. 9 (3), 282-291 (2008).
  22. Bajenoff, M., et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity. 25 (6), 989-1001 (2006).
  23. Kawakami, N., Flugel, A. Knocking at the brain’s door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures. Seminars in immunopathology. 32 (3), 275-287 (2010).
  24. Wilson, E. H., et al. Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity. 30 (2), 300-311 (2009).
  25. Schaeffer, M., et al. Dynamic imaging of T cell-parasite interactions in the brains of mice chronically infected with Toxoplasma gondii. Journal of immunology. 182 (10), 6379-6393 (2009).
  26. Egen, J. G., et al. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity. 28 (2), 271-284 (2008).
  27. Fiole, D., et al. Two-photon intravital imaging of lungs during anthrax infection reveals long-lasting macrophage-dendritic cell contacts. Infection and immunity. 82 (2), 864-872 (2014).
  28. Celli, S., Albert, M. L., Bousso, P. Visualizing the innate and adaptive immune responses underlying allograft rejection by two-photon microscopy. Nature medicine. 17 (6), 744-749 (2011).
  29. Matheu, M. P., et al. Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by Kv1.3 channel block. Immunity. 29 (4), 602-614 (2008).
  30. Overstreet, M. G., et al. Inflammation-induced interstitial migration of effector CD4(+) T cells is dependent on integrin alphaV. Nature immunology. 14 (9), 949-958 (2013).
  31. Li, J. L., et al. Intravital multiphoton imaging of immune responses in the mouse ear skin. Nature protocols. 7 (2), 221-234 (2012).
  32. Lammermann, T., et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature. 453 (7191), 51-55 (2008).
  33. Teijeira, A., et al. Lymphatic endothelium forms integrin-engaging 3D structures during DC transit across inflamed lymphatic vessels. The Journal of investigative dermatology. 133 (9), 2276-2285 (2013).
  34. Sen, D., Forrest, L., Kepler, T. B., Parker, I., Cahalan, M. D. Selective and site-specific mobilization of dermal dendritic cells and Langerhans cells by Th1- and Th2-polarizing adjuvants. Proceedings of the National Academy of Sciences of the United States of America. 107 (18), 8334-8339 (2010).
  35. Gray, E. E., Suzuki, K., Cyster, J. G. Cutting edge: Identification of a motile IL-17-producing gammadelta T cell population in the dermis. Journal of immunology. 186 (11), 6091-6095 (2011).
  36. Lammermann, T., et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature. 498 (7454), 371-375 (2013).
  37. Ng, L. G., et al. Visualizing the neutrophil response to sterile tissue injury in mouse dermis reveals a three-phase cascade of events. The Journal of investigative dermatology. 131 (10), 2058-2068 (2011).
  38. Kilarski, W. W., et al. Intravital immunofluorescence for visualizing the microcirculatory and immune microenvironments in the mouse ear dermis. PloS one. 8 (2), 57135 (2013).
  39. Chow, Z., Mueller, S. N., Deane, J. A., Hickey, M. J. Dermal regulatory T cells display distinct migratory behavior that is modulated during adaptive and innate inflammation. Journal of immunology. 191 (6), 3049-3056 (2013).
  40. Gebhardt, T., et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature. 477 (7363), 216-219 (2011).
  41. Tozer, G. M., et al. Intravital imaging of tumour vascular networks using multi-photon fluorescence microscopy. Advanced drug delivery reviews. 57 (1), 135-152 (2005).
  42. Lee, J. N., et al. The effects of depilatory agents as penetration enhancers on human stratum corneum structures. The Journal of investigative dermatology. 128 (9), 2240-2247 (2008).
  43. Brandt, E. B., Sivaprasad, U. Th2 Cytokines and Atopic Dermatitis. Journal of clinical & cellular immunology. 2 (3), (2011).
  44. Strid, J., Hourihane, J., Kimber, I., Callard, R., Strobel, S. Disruption of the stratum corneum allows potent epicutaneous immunization with protein antigens resulting in a dominant systemic Th2 response. European journal of immunology. 34 (8), 2100-2109 (2004).
  45. Eriksson, E., Boykin, J. V., Pittman, R. N. Method for in vivo microscopy of the cutaneous microcirculation of the hairless mouse ear. Microvascular research. 19 (3), 374-379 (1980).
  46. Tong, P. L., et al. The skin immune atlas: three-dimensional analysis of cutaneous leukocyte subsets by multiphoton microscopy. The Journal of investigative dermatology. 135 (1), 84-93 (2015).
  47. Barker, J. H., et al. The hairless mouse ear for in vivo studies of skin microcirculation. Plastic and reconstructive surgery. 83 (6), 948-959 (1989).
  48. Zaid, A., et al. Persistence of skin-resident memory T cells within an epidermal niche. Proceedings of the National Academy of Sciences of the United States of America. 111 (14), 5307-5312 (2014).
  49. Stetson, D. B., et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. The Journal of experimental medicine. 198 (7), 1069-1076 (2003).
  50. Mohrs, M., Shinkai, K., Mohrs, K., Locksley, R. M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity. 15 (2), 303-311 (2001).
  51. Moreau, H. D., et al. Dynamic in situ cytometry uncovers T cell receptor signaling during immunological synapses and kinapses in vivo. Immunity. 37 (2), 351-363 (2012).
  52. Cummings, R. J., Mitra, S., Lord, E. M., Foster, T. H. Antibody-labeled fluorescence imaging of dendritic cell populations in vivo. Journal of biomedical optics. 13 (4), 044041 (2008).
check_url/pt/53585?article_type=t

Play Video

Citar este artigo
Gaylo, A., Overstreet, M. G., Fowell, D. J. Imaging CD4 T Cell Interstitial Migration in the Inflamed Dermis. J. Vis. Exp. (109), e53585, doi:10.3791/53585 (2016).

View Video