Summary

High-Resolution Kvantitativ immunoguld Analyse af membranreceptorer på retinale Ribbon synapser

Published: February 18, 2016
doi:

Summary

The postembedding immunogold method is one of the most effective ways to provide high-resolution analyses of the subcellular localization of specific molecules. Here we describe a protocol to quantitatively analyze glutamate receptors at retinal ribbon synapses.

Abstract

Retinal ganglion cells (RGCs) receive excitatory glutamatergic input from bipolar cells. Synaptic excitation of RGCs is mediated postsynaptically by NMDA receptors (NMDARs) and AMPA receptors (AMPARs). Physiological data have indicated that glutamate receptors at RGCs are expressed not only in postsynaptic but also in perisynaptic or extrasynaptic membrane compartments. However, precise anatomical locations for glutamate receptors at RGC synapses have not been determined. Although a high-resolution quantitative analysis of glutamate receptors at central synapses is widely employed, this approach has had only limited success in the retina. We developed a postembedding immunogold method for analysis of membrane receptors, making it possible to estimate the number, density and variability of these receptors at retinal ribbon synapses. Here we describe the tools, reagents, and the practical steps that are needed for: 1) successful preparation of retinal fixation, 2) freeze-substitution, 3) postembedding immunogold electron microscope (EM) immunocytochemistry and, 4) quantitative visualization of glutamate receptors at ribbon synapses.

Introduction

Glutamat er den dominerende excitatoriske neurotransmitter i nethinden 1. Retina-ganglieceller (RGC'er), der modtager glutamaterge synaptiske input fra bipolære celler 2, er output-neuroner i nethinden, der sender visuel information til hjernen. Fysiologiske undersøgelser viste, at synaptisk excitation af RGC'er medieres postsynaptisk af NMDA-receptorer (NMDARs) og AMPA-receptorer (AMPARs) 3,4,5. Selvom excitatoriske postsynaptiske strømme (EPSCs) i RGC'er formidles af AMPARs og NMDARs 3,5,6,7,8, spontane miniature EPSCs (mEPSCs) på RGC'er udviser kun en AMPARs-medieret komponent 4,5,9. Men reduktion glutamatoptagelse afslørede en NMDAR komponent i spontane EPSCs 5, hvilket antyder, at NMDARs på RGC dendritter kan være placeret uden for excitatoriske synapser. Membranassocierede guanylat kinaser (MAGUKs) såsom PSD-95 at klynge neurotransmitterreceptorer, herunder glutamatreceptorer og ionkanals ved synaptiske steder, også udviser distinkte subsynaptic ekspressionsmønstre 10,11,12,13,14.

I de seneste årtier, konfokal immunhistokemi og præ-embedding elektronmikroskop (EM) immunhistokemi har været ansat til at studere membran receptor udtryk. Selv konfokal immunfarvning afslører brede mønstre af receptorekspression, dens lavere opløsning gør det umuligt at bruge til at skelne subcellulær placering. Pre-indlejring EM studier i pattedyrs nethinden viser, at NMDAR underenheder er til stede i postsynaptiske elementer ved kegle bipolære celle bånd synapser 15,16,17. Dette er i tilsyneladende modsætning til fysiologiske beviser. Imidlertid diffusion af reaktionsprodukt er et velkendt artefakt i præ-embedding immunperoxidase-metoden. Derfor er denne fremgangsmåde ikke normalt give statistisk pålidelige data og kan udelukke skelnen mellem lokalisering til synaptisk membran versus ekstrasynaptiske membran 18,19,20,21. PåDerimod fysiologiske og anatomiske data stemmer overens med et synaptisk lokalisering af AMPARs på RGC'er 3,5,7,9,22. Således er glutamatreceptorer og MAGUKs på retinal bånd synapse lokaliseret ikke alene til den postsynaptiske men også de perisynaptic eller ekstrasynaptiske membran rum. Dog er der stadig behov for en høj opløsning kvantitativ analyse af disse membranproteiner i en retinal bånd synapse.

Her har vi udviklet en postembedding EM immunguld teknik til at undersøge subsynaptic lokalisering af NMDAR underenheder, Ampar underenheder og PSD-95 efterfulgt af anslå antallet, tæthed og variation af disse proteiner på synapser onto rotte RGC'er mærket hjælp kolera toksin subunit B (CTB) retrograd tracing metoder.

Protocol

Pleje og håndtering af dyr var i overensstemmelse med NIH Animal Care og brug Udvalg retningslinjer. Postnatal dag (P) 15-21 Sprague-Dawley-rotter, der var injiceret med 1-1,2% CTB bilateralt gennem den overlegne colliculus, blev opretholdt på en 12: 12-timers lys: mørke-cyklus. 1. Retinal vævsfiksering Saml følgende materialer og redskaber: En dissektionsmikroskop, 2 pincet med meget fine tips, sakse, cellulose filter papir, plastik pipette og et objektglas. Anesth…

Representative Results

Resultaterne præsenteres her demonstrerer påfaldende forskellige subsynaptic lokalisering mønstre af GLUa 2/3 og NMDARs på RGC dendritter i rotte nethinden, som tidligere 24,25 beskrevet. 77% af GLUa 2/3 immunogold partikler i RGC dendritiske profiler blev placeret i PSD (figur 1A), der ligner mest centrale synapser. Men NMDARs blev placeret enten synaptisk eller extrasynaptically. 83% af GluN2A immunogold partikler blev lokaliseret i PSD (figur 1C…

Discussion

Vi har beskrevet fire teknikker for vellykket kvantitativ post-embedding immunogold EM: 1) korte og svage fiksering, 2) fryse-substitution, 3) post-embedding immunguld-farvning, og 4) kvantificering.

EM immunguld tillader påvisning af specifikke proteiner i ultratynde vævssnit. Antistoffer mærket med guldpartikler direkte kan visualiseres under anvendelse af EM. Mens magtfulde i påvise subsynaptic lokalisering af en membran receptor, kan EM immunogold være teknisk udfordrende, og kræve…

Declarações

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af intramuralt Programmer for National Institute of Neurologiske og Stroke (NINDS) og National Institute on Døvhed og anden kommunikation Disorders (NIDCD), af National Institutes of Health (NIH). Vi takker NINDS EM faciliteten og NIDCD avancerede billedbehandling kerne (kode # ZIC DC 000.081-03) for at få hjælp.

Materials

Paraformaldehyde EMS 15710
Glutarldehyde EMS 16019
NaH2PO4 Sigma S9638
Na2HPO4 Sigma 7782-85-6
CaCl2 Sigma C-8106
BSA Sigma A-7030
Triton X-100 Sigma T-8787
NaOH Sigma 221465
NaN3 JT Baker V015-05
Glycerol Gibco BRL 15514-011
Lowicryl HM 20 Polysciences 15924-1
Tris-Base Fisher BP151-500
Tris Fisher 04997-100
Anti-GluN2A Millipore AB1555P Dilution 1/50
Anti-GluN2B Millipore AB1557P Dilution 1/30
Anti-GluA2/3 Millipore AB1506 Dilution 1/30
Anti-PSD-95 Millipore MA1–046 Dilution 1/100
Donkey anti-rabbit IgG-10 nm gold particles EMS 25704 Dilution 1/20
Donkey anti-mouse IgG-10 nm gold particles EMS 25814 Dilution 1/20
Donkey anti-mouse IgG-5 nm gold particles EMS 25812 Dilution 1/20
Donkey anti-goat IgG-18 nm gold particles Jackson ImmunoResearch 705-215-147 Dilution 1/20
Formvar-Carbon coated nickel-slot grids. EMS FCF2010-Ni
Uranyl acetate EMS 22400-1
Methanol EMS 67-56-1
Lead citrate Leica
Leica EM AFS Leica
Leica EM CPC Leica
Ultromicrotome Leica
JEOL 1200 EM JEOL
liquid nitrogen  Roberts Oxygen
Propane Roberts Oxygen
CTB List Biological Laboratories 104 1-1.2%
Anti-CTB List Biological Laboratories 703 Dilution 1/4000

Referências

  1. Copenhagen, D. R., Jahr, C. E. Release of endogenous excitatory amino acids from turtle photoreceptors. Nature. 341, 536-539 (1989).
  2. Wässle, H., Boycott, B. B. Functional architecture of the mammalian retina. Physiol. Rev. 71, 447-480 (1991).
  3. Mittman, S., Taylor, W. R., Copenhagen, D. R. Concomitant activation of two types of glutamate receptor mediates excitation of salamander retinal ganglion cells. J. Physiol. 428, 175-197 (1990).
  4. Matsui, K., Hosoi, N., Tachibana, M. Excitatory synaptic transmission in the inner retina: paired recordings of bipolar cells and neurons of the ganglion cell layer. J. Neurosci. 18, 4500-4510 (1998).
  5. Chen, S., Diamond, J. S. Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina. J. Neurosci. 22, 2165-2173 (2002).
  6. Diamond, J. S., Copenhagen, D. R. The contribution of NMDA and non-NMDA receptors to the light-evoked input-output characteristics of retinal ganglion cells. Neuron. 11, 725-738 (1993).
  7. Lukasiewicz, P. D., Wilson, J. A., Lawrence, J. E. AMPA-preferring receptors mediate excitatory synaptic inputs to retinal ganglion cells. J. Neurophysiol. 77, 57-64 (1997).
  8. Higgs, M. H., Lukasiewicz, P. D. Glutamate uptake limits synaptic excitation of retinal ganglion cells. J. Neurosci. 19, 3691-3700 (1999).
  9. Taylor, W. R., Chen, E., Copenhagen, D. R. Characterization of spontaneous excitatory synaptic currents in salamander retinal ganglion cells. J. Physiol. 486, 207-221 (1995).
  10. Kennedy, M. B. Origin of PDZ (DHR, GLGF) domains. Trends. Biochem. Sci. 20, 350 (1995).
  11. Kim, E., Sheng, M. PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5, 771-781 (2004).
  12. Migaud, M., et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature. 396, 433-439 (1998).
  13. Aoki, C., et al. Electron microscopic immunocytochemical detection of PSD-95, PSD-93, SAP-102, and SAP-97 at postsynaptic, presynaptic, and nonsynaptic sites of adult and neonatal rat visual cortex. Synapse. 40, 239-257 (2001).
  14. Davies, C., Tingley, D., Kachar, B., Wenthold, R. J., Petralia, R. S. Distribution of members of the PSD-95 family of MAGUK proteins at the synaptic region of inner and outer hair cells of the guinea pig cochlea. Synapse. 40, 258-268 (2001).
  15. Hartveit, E., Brandstätter, J. H., Sassoè-Pognetto, M., Laurie, D. J., Seeburg, P. H., Wässle, H. Localization and developmental expression of the NMDA receptor subunit NR2A in the mammalian retina. J. Comp. Neurol. 348, 570-582 (1994).
  16. Fletcher, E. L., Hack, I., Brandstätter, J. H., Wässle, H. Synaptic localization of NMDA receptor subunits in the rat retina. J. Comp. Neurol. 420, 98-112 (2000).
  17. Pourcho, R. G., Qin, P., Goebel, D. J. Cellular and subcellular distribution of NMDA receptor subunit NR2B in the retina. J. Comp. Neurol. 433, 75-85 (2001).
  18. Ottersen, O. P., Landsend, A. S. Organization of glutamate receptors at the synapse. Eur. J. Neurosci. 9, 2219-2224 (1997).
  19. Petralia, R. S., Wenthold, R. J., Ariano, M. A. Glutamate receptor antibodies: Production and immunocytochemistry. Receptor Localization: Laboratory Methods and Procedures. , 46-74 (1998).
  20. Petralia, R. S., Wenthold, R. J. Immunocytochemistry of NMDA receptors. Methods. Mol. Biol. 128, 73-92 (1999).
  21. Nusser, Z. AMPA and NMDA receptors: similarities and differences in their synaptic distribution. Curr. Opin. Neurobiol. 10, 337-341 (2000).
  22. Qin, P., Pourcho, R. G. Localization of AMPA-selective glutamate receptor subunits in the cat retina: a light- and electron-microscopic study. Vis. Neurosci. 16, 169-177 (1999).
  23. Zhang, J., Wang, H. H., Yang, C. Y. Synaptic organization of GABAergic amacrine cells in salamander retina. Visual. Neurosci. 21, 817-825 (2004).
  24. Zhang, J., Diamond, J. S. Distinct perisynaptic and synaptic localization of NMDA and AMPA receptors on ganglion cells in rat retina. J. Comp. Neurol. 498, 810-820 (2006).
  25. Zhang, J., Diamond, J. S. Subunit- and Pathway-Specific Localization of NMDA Receptors and Scaffolding Proteins at Ganglion Cell Synapses in Rat Retina. J. Neurosci. 29, 4274-4286 (2009).
  26. Peters, A., Palay, S., Webster, H. . The fine structure of the nervous system: neurons and their supporting cells, 3rd ed. , (1991).
  27. Baude, A., Nusser, Z., Roberts, J. D. B. The metabotropic glutamate receptor (mGluR1) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron. 11, 771-787 (1993).
  28. Van Lookeren Campagne, M., Oestreicher, A. B., van der Krift, T. P., Gispen, W. H., Verkleij, A. J. Freeze-substitution and Lowicryl HM20 embedding of fixed rat brain: Suitability for immunogold ultrastructural localization of neural antigens. J. Hist. Cyt. 39, 1267-1279 (1991).
  29. Matsubara, A., Laake, J. H., Davanger, S., Usami, S., Ottersen, O. P. Organization of AMPA receptor subunits at a glutamate synapse: A quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J. Neurosci. 16, 4457-4467 (1996).
  30. Petralia, R. S., et al. Organization of NMDA receptors at extrasynaptic locations. Neurociência. 167, 68-87 (2010).
  31. Merighi, A., Polak, J. M., Priestley, J. V. Post-embedding electron microscopic immunocytochemistry. Electron Microscopic Immunocytochemistry: Principles and Practice. , 51-87 (1992).
  32. Ottersen, O. P., Takumi, Y., Matsubara, A., Landsend, A. S., Laake, J. H., Usami, S. Molecular organization of a type of peripheral glutamate synapse: the afferent synapses of hair cells in the inner ear. Prog. Neurobiol. 54, 127-148 (1998).
  33. Nusser, Z., Lujan, R., Laube, G., Roberts, J. D., Molnar, E., Somogyi, P. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron. 21, 545-559 (1998).
  34. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E., Ottersen, O. P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci. 2, 618-624 (1999).
  35. Grimes, W. N., et al. Complex inhibitory microcircuitry regulates retinal signaling near visual threshold. J. Neurophysiol. 114, 341-353 (2015).
  36. Sassoe-Pognetto, M., Ottersen, O. P. Organization of ionotropic glutamate receptors at dendrodendritic synapses in the rat olfactory bulb. J. Neurosci. 20, 2192-2201 (2000).

Play Video

Citar este artigo
Zhang, J., Petralia, R. S., Wang, Y., Diamond, J. S. High-Resolution Quantitative Immunogold Analysis of Membrane Receptors at Retinal Ribbon Synapses. J. Vis. Exp. (108), e53547, doi:10.3791/53547 (2016).

View Video