プロトコルは、 その場での pHが生成実験に用のホウ素ドープダイヤモンド(BDD)電極とその後のアプリケーションの主要な電気化学的パラメータの特徴付けのために記載されています。
ホウ素(BDD)電極は、このような拡張溶媒窓としての報告の性質などの低バックグラウンド電流を、耐食性の多くは、表面の触媒的に不活性な性質から生じる電極材料としてかなり有望であることが示されているダイヤモンドをドープしました。成長プロセス中に、非ダイヤモンド炭素(NDC)が電極マトリックス中に取り込まれる場合、表面はより触媒的に活性になるしかし、電気化学的特性が変化します。そのためには、電気化学者は品質を認識し、使用前に、BDD電極のキー電気化学的特性を結果であることが重要です。本稿ではBDD電極を無視NDC すなわち無視できるのsp 2炭素が含まれているかどうかを確認するために、ラマン顕微鏡、容量、溶剤ウィンドウと酸化還元電気化学を含む、特性の一連のステップを説明しています。一つの用途は、触媒的に不活性の利点をとる強調表示されていますそして、NDCのない表面の耐腐食性の性質が原因で、BDD電極における水の電気分解に安定して定量化ローカルプロトンと水酸化生産、すなわち。イリジウム酸化物被覆BDD電極を用いた水の電気分解により誘導される局所的なpH変化を測定する手法は、詳細に記載されています。
任意の電気分析試験を行う際に、電極材料の選択が非常に重要です。近年では、材料「金属様」をレンダリングするために十分なホウ素をドープしたsp 3炭素(ダイヤモンド)は、その優れた電気化学的(および熱的、機械的)性質1,2に電気分析アプリケーションの広い範囲のための一般的な選択肢となっています、3。これらは極端な溶液、温度及び圧力条件4ウルトラワイド溶媒窓、低いバックグラウンド電流、および他の一般的に使用される電極材料5-7,3と比較して、汚れ減少下で耐腐食性を含みます。 例えば 、7,8構造的完全性と異なる内側球酸化還元種に対する感受性の両方の変化をバックグラウンド電流を増加させる、減少溶媒ウィンドウのコンテンツの結果:ただし、非ダイヤモンド炭素(SP 2 NDC)を増加させます。酸素9-12。
そうするために注意してください私のアプリケーションは、NDC存在が有利な13のように見られています。材料は十分なホウ素が含まれていない場合はさらに、p型半導体として動作し、材料はほとんどの電荷キャリア7が欠乏している還元電位窓内の酸化還元種、に対する感受性の低下が表示されます。最後に、ホウ素ドープダイヤモンドの表面の化学的性質(BDD)は、観測された電気化学的反応で役割を果たすことができます。終端表面の半導電性のBDD電極は、「金属様」7を見えることがあります-これは、化学物質を表面と水素(H – )は、ドープダイヤモンドを下げるに敏感な内球種について特にそうです。
BDDの優れた特性を利用するためには、材料が十分にドープされていることが多い不可欠であり、できるだけNDCが含まれています。 BDDを成長させるために採用した方法に応じて、プロパティは14,15を変えることができます。本論文では、まず素材と選民を示唆しています使用前に、BDD電極適性を評価するためのrochemical特性評価プロトコルガイド( すなわち十分なホウ素、最小限のNDC)、次にローカルプロトコル検証電極を用いて電気化学的にpHを変化させることに基づいて、1つのアプリケーションについて説明します。このプロセスは、長時間極端印加される電位(または電流)の適用下での腐食や溶解に向けてNDCのないBDDの表面弾性を利用しています。特にBDD電極の使用は、安定したプロトン(H +)の又は水酸化物を生成する(OH – )16,17は、本明細書に記載されている第二(センサ)に近接して水の電気分解(それぞれ酸化または還元)によるフラックス。
このようにして、pH滴定実験のために、例えば 、系統的な方法でセンサーのpH環境を制御するために、または電気化学的方法が最も敏感である値にpH値を固定することができます。後者は、のために特に便利ですセンサーがソースに配置される用途、 例えば川 、湖、海、システムのpHは、目的の電気化学測定には最適ではありません。最近の二つの例としては、ローカライズされた低pH(I)の生成を、pHが中性溶液中で、水銀17の電着とストリッピングのために、 BDDは、拡張陰極ウィンドウ9,18,19による金属の電着のために好まれる材料であることに注意。 (ⅱ)ローカル16強アルカリ性、中性のpHを増加させることにより、高いpHで存在する硫化水素の電気化学的に検出形、の定量を。
H終端表面が特に高い陽極電位7,40,41で、電気化学的に不安定であるため、O終端表面で開始が提唱されています。表面終端を変更することは、(局所溶液のpHを変更するために本明細書中で使用される)水の電気分解などの内側の球カップルの電子移動の速度に影響を与えることができます。 BDDは、粒界で重要なNDCを含む場合にさらに、これらの弱い点で発生する可能性エッチングのp…
The authors have nothing to disclose.
私たちは、 図4(b)の写真のために、ビデオ、ミスジェニファーウェッブ接触角測定に関するアドバイスやビジュアルのためのための光学顕微鏡画像を処理するためのドクタージョナサンニューランドに感謝し、 図2Bのミスセー観音タン溶剤ウィンドウのデータ本明細書に記載されたプロトコルを開発するために支援してきましたワーウィック電気化学およびインターフェイスグループのラマン分光法、またメンバーにアドバイスを、博士マキシムジョセフ。また、プロトコルの撮影に彼らの一部のためにマックスヨセフ、Lingcong孟、ゾーイエアーズロイMeylerに感謝したいと思います。
Pt Wire | Counter Electrode | ||
Saturated Calomel Electrode | IJ Cambria Scientific Ltd. | 2056 | Reference Electrode (alternatively use Ag|AgCl) |
BDD Electrode | Working Electrode | ||
Iridium Tetrachloride | VWR International Ltd | 12184.01 | |
Hydrogen Peroxide | Sigma-Aldrich | H1009 | (30% w/w) Corrosive |
Oxalic Acid | Sigma-Aldrich | 241172 | Harmful, Irritant |
Anhydrous Potassium Chloride | Sigma-Aldrich | 451029 | |
Sulphuric Acid | VWR International Ltd | 102765G | (98%) Corrosive |
Potassium Nitrate | Sigma-Aldrich | 221295 | |
Hexaamine Ruthenium Chloride | Strem Chemicals Inc. | 44-0620 | Irritant |
Perchloric Acid | Sigma-Aldrich | 311421 | Oxidising, Corrosive |
2-Propanol | Sigma-Aldrich | 24137 | Flammable |
Nitric Acid | Sigma-Aldrich | 695033 | Oxidising, Corrosive |
Sputter/ Evapourator | With Ti & Au targets | ||
Raman | 514.5 nm laser | ||
Annealing Oven | Capable of 400°C | ||
Ag paste | Sigma-Aldrich | 735825 | or other conductive paint |
Potentiostat | |||
pH Buffer solutions | Sigma-Aldrich | 38740-38752 | Fixanal buffer concentrates |
Phenolphthalein Indicator | VWR International Ltd | 210893Q | |
Methyl Red Indicator | Sigma-Aldrich | 32654 |