Saturable and reverse saturable scattering were discovered in isolated plasmonic particles and adopted as a novel non-bleaching contrast method in super-resolution microscopy. Here the experimental procedures of detecting and extracting nonlinear scattering are explained in detail, as well as how to enhance resolution with the aid of saturated excitation microscopy.
Plasmonics, which are based on the collective oscillation of electrons due to light excitation, involve strongly enhanced local electric fields and thus have potential applications in nonlinear optics, which requires extraordinary optical intensity. One of the most studied nonlinearities in plasmonics is nonlinear absorption, including saturation and reverse saturation behaviors. Although scattering and absorption in nanoparticles are closely correlated by the Mie theory, there has been no report of nonlinearities in plasmonic scattering until very recently.
Last year, not only saturation, but also reverse saturation of scattering in an isolated plasmonic particle was demonstrated for the first time. The results showed that saturable scattering exhibits clear wavelength dependence, which seems to be directly linked to the localized surface plasmon resonance (LSPR). Combined with the intensity-dependent measurements, the results suggest the possibility of a common mechanism underlying the nonlinear behaviors of scattering and absorption. These nonlinearities of scattering from a single gold nanosphere (GNS) are widely applicable, including in super-resolution microscopy and optical switches.
In this paper, it is described in detail how to measure nonlinearity of scattering in a single GNP and how to employ the super-resolution technique to enhance the optical imaging resolution based on saturable scattering. This discovery features the first super-resolution microscopy based on nonlinear scattering, which is a novel non-bleaching contrast method that can achieve a resolution as low as l/8 and will potentially be useful in biomedicine and material studies.
De studie van plasmonics trok veel belangstelling vanwege de toepassingen in vele verschillende gebieden 1-4. Een van de meest onderzochte velden plasmonics een oppervlaktebehandeling plasmonics, waarbij de collectieve oscillatie van geleidingselektronen paren met een externe electromagnetische golf bij een grensvlak tussen een metaal en diëlektricum. Oppervlak Plasmonics is onderzocht voor zijn potentiële toepassingen in subwavelength optica, biofotonica en microscopie 5,6. De sterke veldversterking in de ultra-kleine hoeveelheid metallische nanodeeltjes als gevolg van lokale surface plasmon resonance (LSPR) trok veel aandacht, niet alleen vanwege de uitzonderlijke gevoeligheid voor deeltjesgrootten, deeltjesvormen en de diëlektrische eigenschappen van het omringende medium 7 -10, maar ook vanwege zijn vermogen om inherent zwak niet-lineaire optische effecten 11 te verhogen. De uitzonderlijke gevoeligheid van LSPR is waardevol voor bio-sensing en bijna-field beeldvormende technieken 12,13. Aan de andere kant kan de verbeterde lineariteit van plasmon structuren worden gebruikt in fotonische geïntegreerde schakelingen in toepassingen zoals optische switching en volledig optische signaalverwerking 14,15. Het is bekend dat de plasmon absorptie lineair evenredig aan de excitatie-intensiteit bij lage intensiteit. Wanneer de excitatie sterk genoeg is, de absorptie bereikt verzadiging. Intrigerend, bij hogere intensiteit, de absorptie verhoogt opnieuw. Deze niet-lineaire effecten zijn verzadigbaar absorptie (SA) 15-17 genoemd en achteruit verzadigbaar absorptie (RSA) 18, respectievelijk.
Het is bekend dat als gevolg van de LSPR, verstrooiing is bijzonder sterk in plasmonische structuren. Op basis van fundamentele elektromagnetisme, moet de respons van verstrooiing versus incident intensiteit lineair zijn. Echter, in nanodeeltjes, verstrooiing en absorptie zijn nauw met elkaar verbonden via de Mie theorie, en beide kunnen worden expressed in termen van reële en imaginaire delen van de diëlektrische constante. In de veronderstelling dat een enkele GNS zich gedraagt als een dipool onder licht verlichting, kan de verstrooiing coëfficiënt (Q SCA) en absorptie coëfficiënt (Q abs) uit één plasmonische nanodeeltje volgens de Mie theorie worden uitgedrukt als 19
waarin x 2 πa / λ, a de straal van de bol en m 2 is ε m / ε d. Hier, ε m pt ε d overeen met de diëlektrische constanten van het metaal en de omringende diëlektrische resp. Aangezien de vorm van de verstrooiingscoëfficiënt is vergelijkbaar met die van the absorptiecoëfficiënt, wordt daarom verwacht dat verzadigbaar verstrooiing observeren in één plasmonische nanodeeltje 20.
Onlangs lineaire verzadigbare verstrooiing in een geïsoleerde plasmonische deeltjes werd aangetoond voor het eerst 21. Het is opmerkelijk dat in diepe verzadiging, de verstrooiingsintensiteit in feite daalde licht wanneer de excitatie-intensiteit verhoogd. Nog meer opvallend wanneer de excitatie-intensiteit een intensievere na verstrooiing verzadigd raakte, de verstrooiingsintensiteit opgestaan, die het effect van omgekeerde verzadigbaar 20 verstrooiing. Wavelength- en grootte-afhankelijke studies hebben aangetoond een sterke relatie tussen LSPR en niet-lineaire verstrooiing 21. De intensiteit en de golflengte afhankelijkheid van plasmon verstrooiing is vergelijkbaar met de absorptie, suggereert een gemeenschappelijk mechanisme achter deze niet-lineair gedrag.
In termen van toepassingen, is het goed known lineariteit die helpt optische microscopie resolutie te verbeteren. In 2007, verzadigd excitatie (SAX) microscopie werd voorgesteld, die resolutie kan verbeteren door het extraheren van de verzadigde signaal via een tijdelijke sinusvormige modulatie van de excitatiebundel 22. SAX microscopie is gebaseerd op het concept dat een laser brandpunt, de intensiteit sterker in het midden dan aan de rand. Als het signaal (ofwel fluorescentie of verstrooiing) vertoont saturatiegedrag, moet de verzadiging starten van het centrum, terwijl de lineaire respons blijft aan de periferie. Daarom, als er een methode om alleen het gedeelte verzadigde extract, het zal alleen laat het middengedeelte en de verwerping het randdeel, dus effectief verbeteren van de ruimtelijke resolutie. In principe is er geen lagere resolutie limiet in SAX microscopie, mits diepe verzadiging bereikt is en er geen monster schade als gevolg van de intense verlichting.
Aangetoond is dat de resolution fluorescentiebeeldvorming kan aanzienlijk worden verbeterd door gebruikmaking van de SAX techniek. Echter, lijdt de fluorescentie fotobleken effect. Het combineren van de ontdekking van verstrooiing lineariteit en het concept van SAX, kan superresolutietechnieken basis van verstrooiing worden gerealiseerd 21. Vergeleken met conventionele superresolutie microscopie, de verstrooiing gebaseerde techniek verschaft een nieuwe niet-blekende contrast methode. In dit artikel wordt een stap-voor-stap beschrijving gegeven om de vereiste te verkrijgen en halen de niet-lineariteit van plasmonische verstrooiing procedures te schetsen. Werkwijzen voor het identificeren verstrooiing lineariteiten geïntroduceerd door het veranderen van de invallende intensiteit beschreven. Meer informatie zal worden verstrekt om te ontrafelen hoe deze lineariteiten invloed beelden van enkele nanodeeltjes en hoe ruimtelijke resolutie kan dienovereenkomstig door de SAX techniek worden verbeterd.
In het protocol zijn er verschillende kritische stappen. Ten eerste, de voorbereiding van de monsters, de dichtheid van nanodeeltjes moet niet te hoog zijn, plasmon koppeling tussen deeltjes te voorkomen. Als twee of meer deeltjes zeer dicht bij elkaar, de koppeling resulteert in de LSPR golflengteverschuivende richting van langere golflengten, waardoor de lineariteit aanzienlijk verminderen. Echter, deze beeldvormende techniek daadwerkelijk brengt de verdeling van plasmonische wijzen, in plaats van de deeltjes zelf. Da…
The authors have nothing to disclose.
This work is supported by Ministry of Science and Technology under NSC-101-2923-M-002-001-MY3 and NSC-102-2112-M-002-018-MY3. This research is also supported by the Japan Society for the Promotion of Science (JSPS) through the “Funding Program for Next Generation World-Leading Researchers (NEXT Program),” initiated by the Council for Science and Technology Policy (CSTP) and JSPS Asian CORE Program.
microscope body | Olympus, Japan | BX-51 | |
objective lens | Olympus, Japan | UPlanSapo, 100X, NA 1.4 | |
80-nm gold colloid | BBI Solutions, UK | EM.GC80 | |
supercontinuum laser | Fianium, United Kingdom | SC400-2-PP | |
broadband dielectric mirrors | Thorlabs, USA | BB1-E02 | |
field emission SEM | JEOL, Japan | JSM-6330F | optional |
spectrometer | Andor Technology, UK | Shamrock 163 | |
charge-coupled device | Andor Technology, UK | iDus DV420A-OE | |
acousto-optic modulators | IntraAction Corp., USA | AOM-402AF1 | |
lock-in amplifier | Stanford Research Systems, USA | SR-830 | |
MAS-coated slide glass | Matsunami Glass, Japan, | S9215 |