Summary

构建基于细胞的神经递质荧光工程记者(CNiFERs)神经递质的光学检测<em>在体内</em

Published: May 12, 2016
doi:

Summary

我们提出了一个协议,用于容量神经递质释放的光学检测创建基于细胞的神经递质荧光工程记者(CNiFERs)。

Abstract

基于细胞的神经递质荧光工程记者(CNiFERs)为神经科学家光学检测神经递质的释放在脑中体内的新工具。具体CNiFER是从稳定地表达特定的G蛋白偶联受体,其耦合至G Q / 11的G蛋白,以及一个基于FRET的 -detector,TN-XXL人胚肾细胞产生。该受体的活化导致的增加的FRET信号。 CNiFERs有纳米灵敏度和几秒钟的时间响应,因为一个CNiFER克隆利用天然受体对特定的神经递质, 例如 D2R为多巴胺。 CNiFERs被直接注入到大脑,使他们能够感神经递质释放与小于一百微米的空间分辨率,这使得它们理想来测量体内体积传输。 CNiFERs也可以用来筛选其它药物用于在vi潜在的交叉反应性VO。我们最近扩大CNiFERs的系列,包括G蛋白偶联受体的夫妇至G I / O的G蛋白。 CNiFERs可用于检测乙酰胆碱(ACh),多巴胺(DA)和去甲肾上腺素(NE)。鉴于任何GPCR可用于创建一个新颖CNiFER并有大约在人类基因组800的GPCR,我们在这里描述的一般方法来设计,实现和测试的任何类型的CNiFER的。

Introduction

为了全面了解神经元在大脑中的通信方式,它必须有用于测量神经递质在体内的释放的方法。有在体内神经递质检测几种行之有效的方法。一种常用的技术是微透析,其中套管被插入到脑和脑脊液中的一小体积被收集并用高效液相色谱法和电化学检测1进行分析。微透析有探针的几个直径的量级的空间分辨率, 例如 ,约0.5毫米的直径200微米的微探针。这种技术的时间分辨率,但是,是缓慢由于采样间隔,通常持续约5分钟以上1。此外,分析还没有实时进行。另一种技术是快速扫描循环伏安(FSCV),其使用插入到大脑的碳纤维探针。 FSCV具有优良的温度口服分辨率(亚秒),高灵敏度(毫微摩尔),并与探针直径的5至30微米的空间分辨率。然而,FSCV被限制为在碳势探头2产生的特性的氧化和与电压降低信息发射机。

测量神经递质第三种技术是直接通过基因编码的神经递质(NT)生物传感器3。用这种方法,融合蛋白创建包含用于耦合到荧光共振能量转移(FRET)系一对荧光团4或置换的GFP 5的发射机的配体结合域。不同于前两种方法,这些生物传感器遗传编码和表达的宿主细胞的表面上,如神经元,通过生产转基因动物的或急性与使用病毒试剂的感染细胞。迄今为止,遗传编码的生物传感器已被被仅用于detectin开发摹谷氨酸和GABA 3-5。这些技术的限制一直是低的灵敏度,在nM范围内,以及无法扩大检测到大量的发送器, 例如 ,经典的神经递质,神经肽和神经调质,其通过G蛋白偶联受体(GPCR)的信号。事实上,也有人类基因组近800 G蛋白偶联受体。

为了解决这些不足,我们已经开发了一种创新工具,通过一个GPCR信号的任何神经递质的光学测量释放。 CNiFERs(基于细胞的神经递质的荧光工程记者)的设计,以表达特定的GPCR是,在受到刺激时,会触发钙离子浓度由遗传编码的基于FRET的钙离子传感器检测到细胞内增加克隆HEK293细胞, TN-XXL。因此,CNiFERs变换神经递质受体结合到荧光变化,提供了一个直接和实时的光读EAD出局部神经递质的活动。通过利用天然受体对于给定的神经递质,CNiFERs保留化学特异性,亲和力和内源性表达的受体的时空动力 ​​学到目前为止,我们已经创建了三种CNiFERs,一个用于使用M1受体,一个用于检测多巴胺检测乙酰胆碱使用D2受体,和一个用于使用α1A受体6,7-检测去甲肾上腺素。该CNiFER技术很容易扩展和可扩展性,使得它适合于任何类型的GPCR的。在这个朱庇特的文章中,我们描述和示出了在体内 CNiFERs设计,实现的方法,及测试方法的任何应用。

Protocol

在这项研究中进行的所有动物的程序都是按照机构动物护理和使用委员会(IACUC)的指导方针,并已通过在医学学院伊坎在西奈山和加州大学圣地亚哥分校的IACUCs。 1.生成GPCR表达的慢病毒转化HEK293细胞获得的cDNA为从商业来源, 例如 ,cdna.org特定GPCR。可替代地,扩增从使用PCR的cDNA文库的GPCR基因。获得慢病毒表达载体,如PCDH-CMV-MCS-EF1-迪普罗(PCDH)。使用该向量来传播该DNA以?…

Representative Results

特定G蛋白偶联受体(GPCR)和遗传编码的[Ca 2+]传感器,TN-XXL:一个CNiFER是从被设计为稳定地表达至少两种蛋白质人胚肾(HEK293)细胞衍生。 TN-XXL经受响应青色和黄色荧光蛋白,分别ECFP和黄晶,之间荧光共振能量转移(FRET)来的Ca 2+离子6,15。的GPCR即耦合到内源性ģq的G蛋白的激活触发胞质增加的[Ca 2+]通过PLC / IP 3通路,导致…

Discussion

CNiFERs的创建提供了用于体内光学测量大脑神经递质释放的创新和独特的策略。 CNiFERs非常适合用于测量突触外发布, 音量传导,神经递质。重要的是,每CNiFER具有天然的GPCR的性质,提供了在大脑中的神经递质的水平的变化的生理光学测量。迄今,已被用于检测乙酰创建CNiFERs(M1-CNiFER)6,多巴胺(D2-CNiFER)7和去甲肾上腺素(α1A-CNiFER)7。

<p class="jove_co…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢B.康克林(美国加州大学旧金山分校),用于提供对G qi5和G QS5的cDNA,A史怀哲寻求帮助,以电子,N.泰勒与克隆,伊恩Glaaser和罗伯特·里夫金的校对筛查援助,和Olivier Griesbeck为TN-XXL。 (; DA037170 DA029706),生物医学成像和生物工程研究所(NIBIB)(EB003832),霍夫曼 – 罗氏(88610A)和“神经科学这项工作是通过药物滥用美国国家研究所(NIDA)的研究资助项目通过NIDA(DA007315)关于滥用“培训资助的药物。

Materials

pCDH-CMV-MCS-EF1-Puro  System Biosciences CD510B-1 Cloning: for generating lentivirus
12×75 *BD Falcon High Clarity Polypropylene Round Bottom Test Tube BD Biosciences 352063 FACS
BD 40 um Falcon cell strainers BD Biosciences 352340 FACS
0.05% Trypsin EDTA  Invitrogen 25200056 FACS
96 Well Plate, flat bottom, clear  Corning  3596 FACS
96 well cell culture plates  Corning  CLS3997 Flexstation
Optilux black clear bottom  Corning  3603 Flexstation
Flexstation pipet tips Molecular Devices 9000-0911 Flexstation
Acetylcholine Chloride   SimgaAldrich A2661 Flexstation
Norepinephrine   SimgaAldrich A7256 Flexstation
Dopamine Hydrochloride   SimgaAldrich PHR1090 Flexstation
GABA   SimgaAldrich A2129 Flexstation
Histamine   SimgaAldrich H7125 Flexstation
Glutamate   SimgaAldrich 49621 Flexstation
Epinephrine   SimgaAldrich E4642 Flexstation
Somatostatin    SimgaAldrich S1763 Flexstation
5HT    SimgaAldrich H9523 Flexstation
VIP  Alpha Diagnostics Inc.    SP-69627 Flexstation
Orexin A Alpha Diagnostics Inc.    12-p-01 Flexstation
Substance P   SimgaAldrich S6883 Flexstation
Adenosine SimgaAldrich A4036 Flexstation
Melatonin  SimgaAldrich M5250C Flexstation
Fluorescence Plate Reader & software Molecular Devices Flexstation 3 Flexstation
 DMEM (high glucose) with Glutamax   Life Technologies 10569-010 Tissue culture
 Fetal bovine serum Life Technologies 10082-139 Tissue culture
 Pen/Strep  Life Technologies 15140-122 Tissue culture
 Puromycin   InvivoGen ant-pr-1 Tissue culture
 Fibronectin  SimgaAldrich F0895 Tissue culture
CoolCell LX Alcohol-free controlled-rate cell freezing box Bioexpress D-3508) Tissue culture
cyanoacrylate glue  Loctite Loctite no. 495 surgery and stereotaxic injection
plastic paraffin film  VWR Parafilm® surgery and stereotaxic injection
NANOINJECTOR Drummond 3-000-204 surgery and stereotaxic injection
GLASS ELECTRODES Drummond 3-000-203G surgery and stereotaxic injection
hand held drill OSADA Exl-M40 surgery and stereotaxic injection
Burrs for drill Fine Scientific 19007-05; 19007-07) surgery and stereotaxic injection
Sterilizing bath FST 18000-45, Hot Bead Sterilizer surgery and stereotaxic injection
isoflurane chamber/mask Highland Medical Equipment 564-0427, HME 109 Table Top Anesthetic Machine with Isoflurane Vaporizer, O2 Flowmeter, Gang Valve; 564-0852, Induction Chamber 16X7X7.5cm surgery and stereotaxic injection
3D scope with arm Zeiss surgery and stereotaxic injection
fiber optic light surgery and stereotaxic injection
Betadine  surgery and stereotaxic injection
70 % (v/v) isopropyl alcohol surgery and stereotaxic injection
Povidone-Iodine Prep Pads dynarex 1108 surgery and stereotaxic injection
NaCl 0.9% (INJECTION, USP, 918610) surgery and stereotaxic injection
CYCLOSPORINE (INJECTION, USP) surgery and stereotaxic injection
Buprenex (INJECTION) buprenorphine (0.03 μg per g rodent) Sigma surgery and stereotaxic injection
Ophthalmic ointment  Akorn NDC 17478-235-35 surgery and stereotaxic injection
Surgifoam Ethicon surgery and stereotaxic injection
Grip dental cement Dentsply #675571, 675572 surgery and stereotaxic injection
Instant SuperGlue  NDindustries surgery and stereotaxic injection
LOCTITE 4041 surgery and stereotaxic injection
METABOND C&B surgery and stereotaxic injection
no. 0 cover glass Fisher surgery and stereotaxic injection
stereotaxic frame  Kopf surgery and stereotaxic injection
Rectal probe and heating pad FHC 40-90-8D, DC Temperature Controller,40-90-2-06, 6.5X9.5cm Heating Pad40-90-5D-02, Rectal Thermistor Probe surgery and stereotaxic injection
optical breadboard for imaging Thorlabs surgery and stereotaxic injection
Mineral oil Fisher S55667 surgery and stereotaxic injection
Kwik-Cast (Silicone elastomer) World Precision Instruments surgery and stereotaxic injection
Suture   Ethicon 18’’, 1667, 4-0 surgery and stereotaxic injection
Scissors Fine Scientific Tools 91500-09, 15018-10 surgery and stereotaxic injection
Forcepts Fine Scientific Tools 11252-30; #55, 11295-51; Grafe, 11050-10 surgery and stereotaxic injection
Student Halsted-Mosquito Hemostats Fine Scientific Tools 91308-12 surgery and stereotaxic injection
Small Vessel Cauterizer Kit Fine Scientific Tools 18000-00 surgery and stereotaxic injection
Hot Bead Sterilizers Fine Scientific Tools 18000-45 surgery and stereotaxic injection
Instrument Case with Silicone Mat Fine Scientific Tools 20311-21 surgery and stereotaxic injection
Plastic Sterilization Containers with Silicone Mat Fine Scientific Tools 20810-01 surgery and stereotaxic injection
2P fixed-stage fluorescence scope for in vivo imaging Olympus FV1200 MPE in vivo imaging
Multiphoton laser SpectraPhysics Mai Tai DeepSee in vivo imaging
Green Laser Olympus 473 nm Laser in vivo imaging
xy translation base Scientifica MMBP in vivo imaging
FRET filter cube for YFP and CFP Olympus in vivo imaging
25-X water immersion objective Olympus in vivo imaging
air table Newport in vivo imaging
custom built light-tight cage Thorlab in vivo imaging

Referências

  1. Day, J. C., Kornecook, T. J., Quirion, R. Application of in vivo. microdialysis to the study of cholinergic systems. Methods. 23, 21-39 (2001).
  2. Robinson, D. L., Venton, B. J., Heien, M. L., Wightman, R. M. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem. 49, 1763-1773 (2003).
  3. Liang, R., Broussard, G. J., Tian, L. Imaging Chemical Neurotransmission with Genetically Encoded Fluorescent Sensors. ACS Chem Neurosci. , (2015).
  4. Okubo, Y., et al. Imaging extrasynaptic glutamate dynamics in the brain. Proc. Natl. Acad. Sci. USA. 107, 6526-6531 (2010).
  5. Marvin, J. S., et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods. 10, 162-170 (2013).
  6. Nguyen, Q. T., et al. An in vivo biosensor for neurotransmitter release and in situ receptor activity. Nat Neurosci. 13, 127-132 (2010).
  7. Muller, A., Joseph, V., Slesinger, P. A., Kleinfeld, D. Cell-based reporters reveal in vivo dynamics of dopamine and norepinephrine release in murine cortex. Nat Methods. 11, 1245-1252 (2014).
  8. Lorenz, T. C. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp. , e3998 (2012).
  9. Wang, X., McManus, M. Lentivirus production. J Vis Exp. , (2009).
  10. Conklin, B. R., Farfel, Z., Lustig, K. D., Julius, D., Bourne, H. R. Substitution of three amino acids switches receptor specificity of Gqα to that of Gjα. Nature. 363, 274-276 (1993).
  11. Cetin, A., Komai, S., Eliava, M., Seeburg, P. H., Osten, P. Stereotaxic gene delivery in the rodent brain. Nat Protoc. 1, 3166-3173 (2006).
  12. Shih, A. Y., Mateo, C., Drew, P. J., Tsai, P. S., Kleinfeld, D. A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J Vis Exp. , (2012).
  13. Drew, P. J., et al. Chronic optical access through a polished and reinforced thinned skull. Nat Methods. 7, 981-984 (2010).
  14. Shih, A. Y., et al. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab. 32, 1277-1309 (2012).
  15. Yamauchi, J. G., et al. Characterizing ligand-gated ion channel receptors with genetically encoded Ca2+ sensors. PLoS One. 6, e16519 (2011).
  16. Akerboom, J., et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819-13840 (2012).
  17. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nat Methods. 2, 932-940 (2005).
  18. Svoboda, K., Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron. 50, 823-839 (2006).
  19. Cui, G., et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature. 494, 238-242 (2013).
check_url/pt/53290?article_type=t

Play Video

Citar este artigo
Lacin, E., Muller, A., Fernando, M., Kleinfeld, D., Slesinger, P. A. Construction of Cell-based Neurotransmitter Fluorescent Engineered Reporters (CNiFERs) for Optical Detection of Neurotransmitters In Vivo. J. Vis. Exp. (111), e53290, doi:10.3791/53290 (2016).

View Video