While in vitro study of host-pathogen interactions allow the characterization of specific immune responses, in vivo models are required to observe the effects of complex responses. Using Candida albicans exposure followed by Pseudomonas aeruginosa-mediated lung infection, we established a murine model of microbial interactions involved in ventilator-associated pneumonia pathogenicity.
Studieren Wirt-Pathogen-Interaktion ermöglicht es uns, die zugrunde liegenden Mechanismen der Pathogenität bei mikrobiellen Infektion zu verstehen. Die Prognose der Host davon abhängt, dass einer angepassten Immunantwort gegen das Pathogen 1. Immunantwort ist komplex und Ergebnisse aus der Interaktion der Erreger und verschiedene Immun- oder Nicht-Immunzelltypen 2. In-vitro-Studien kann nicht zeichnen diese Interaktionen und konzentrieren sich auf die Zell-Pathogen-Interaktionen. Darüber hinaus ist in dem Atemweg 3, besonders bei Patienten mit eitrigen chronischen Lungenerkrankungen oder bei beatmeten Patienten, vorliegen polymicrobial Gemeinden und komplizieren Wirt-Pathogen-Interaktion. Pseudomonas aeruginosa und Candida albicans sind beide Probleme Pathogene 4, häufig tracheobronchial Proben isoliert, und bis schweren Infektionen, insbesondere in der Intensivstation 5. Mikrobielle Interaktionenzwischen diesen Erregern in vitro berichtet worden, aber die klinische Bedeutung dieser Wechselwirkungen bleibt unklar 6. Die Wechselwirkungen zwischen C. Albicans und P. studieren aeruginosa, ein Mausmodell der C albicans airways Kolonisierung, gefolgt von einem P. aeruginosa- vermittelten akuten Lungeninfektion durchgeführt wurde.
Tiermodelle, vor allem Mäuse, wurden ausgiebig verwendet, um Immunantworten gegen Pathogene zu erkunden. Obwohl angeborenen und erworbenen Immunität unterscheiden zwischen Nagern und Menschen 7, die Leichtigkeit in der Züchtung und der Entwicklung von Knockouts für zahlreiche Gene, stellen Mäusen ein hervorragendes Modell, um Immunantworten 8 studieren. Die Immunreaktion ist komplex und resultiert aus der Wechselwirkung eines Erregers, die ansässigen mikrobiellen Flora und mehrere Immun (Lymphozyten, Neutrophilen, Makrophagen) und nicht-immune (Epithelzellen, Endothelzellen) Zelltypen. 2 In vitro-Untersuchungen erlauben nicht beobachtet Diese komplexen Interaktionen und vor allem auf einmalige zell Pathogen-Interaktionen. Während Tiermodelle müssen mit Vorsicht verwendet und auf sehr spezifische und relevante Fragen beschränken, bieten Mausmodellen einen guten Einblick in den Säuger-Immunantwort in vivo und können Teile der wichtigen klinischen Fragen 7 anzugehen.
<p class="jove_content"> in den Atemwegen ist die Mikrobengemeinschaft komplexe Bindung einer großen Anzahl von verschiedenen Mikroorganismen 6. Während, was eine "normale" Atemwegs microbiome noch bestimmt werden, ansässig sind Gemeinden häufig polymikrobiellen, und stammen aus verschiedenen ökologischen Quellen. Patienten mit eitriger chronischer Lungenerkrankung (zystische Fibrose, bronchectasis) oder beatmeten Patienten weisen eine besondere Flora aufgrund der Besiedelung der Atemwege durch umwelt erworbene Mikroorganismen 9. Pseudomonas aeruginosa und Candida albicans sind beide Problemerreger 5, häufig tracheobronchial Proben zusammen isoliert und verantwortlich für schwere opportunistische Infektion bei diesen Patienten, insbesondere in der Intensivstation (ICU) 4.Isolation dieser Mikroorganismen während einer akuten Lungenentzündung auf der Intensivstation führt antimikrobielle Behandlung gegen P. aeruginosa but Hefe werden normalerweise nicht an dieser Stelle 5 als pathogen angesehen. In vitro Wechselwirkungen zwischen P. aeruginosa und C. albicans wurden weithin berichtet und gezeigt, dass diese Mikroorganismen das Wachstum und das Überleben von einander beeinflussen, aber Studien konnte nicht schließen, wenn die Anwesenheit von C. albicans ist schädlich oder nützlich für den Host 10. Mausmodelle wurden entwickelt, um dieses Relevanz von P. Adresse aeruginosa und C. albicans in vivo, aber die Wechselwirkung zwischen Mikroorganismen war nicht der entscheidende Punkt. In der Tat wurde das Modell etabliert, um die Beteiligung von C. bewerten albicans in Wirtsimmunantwort und Ergebnis.
Eine Vorgängermodell von Roux et al fest bereits eine erste Besiedlung mit C eingesetzt albicans, gefolgt von einer akuten Lungeninfektion durch P. induzierte aeruginosa. Mit ihrem Modell, fanden die Autoren eine schädliche Rolle von prior C. albicans Kolonisation 11. Allerdings verwendet Roux et al eine hohe Belastung von C. albicans in ihrem Modell mit 2 × 10 6 CFU / Maus während 3 aufeinanderfolgenden Tagen. Wir haben eine 4-Tage-Modell der C albicans Atemwege Kolonisierung oder zumindest Persistenz ohne Lungenverletzung, in diesem Modell C. albicans wurde bis zu 4 Tage nach einer einzelnen Instillation von 10 5 CFU pro Maus (2B) 12,13 abgerufen. Nach 4 Tagen wurden keine Beweise von entzündlichen Zellrekrutierung, entzündliche Zytokin-Produktion noch Epithelschädigung beobachtet. Bei 24 – 48 h, auf dem Höhepunkt Vorhandensein von C. albicans, obwohl eine zelluläre und Zytokin angeborenen Immunantwort beobachtet wurde, gab es keine Anzeichen einer Lungenverletzung. Überraschenderweise Mäusen so mit C. kolonisiert albicans 48 h vor dem Einträufeln der P. intranasale aeruginosa-Infektion hatte abgeschwächt im Vergleich zu Mäusen, die mit P. aeruginosa-Infektion allein. ichndeed zeigten Mäuse geringere Lungenschädigung und verminderte Bakterienlast 12,13.
Mehrere Hypothesen könnte diese positive Wirkung von vor Besiedlung mit C. erklären albicans auf P. aeruginosa vermittelten akuten Lungeninfektion. Zunächst wird eine Interspezies-Übersprechen mit jeweils Mikroorganismen Quorum-Sensing-Systeme, die homoserinelactone basierte P. aeruginosa-System und das Farnesol basierten C. albicans System wurden ausgewertet. Zweitens C. albicans als "Lockvogel" Ziel für P. aeruginosa Umleitung des Erregers aus Lungenepithelzellen handeln untersucht. Beide Hypothesen (unveröffentlichte Daten) für ungültig erklärt. Die dritte Hypothese war, dass der "Priming" des angeborenen Immunsystems durch C. albicans für eine verbesserte Folge angeborenen Antwort gegen P. verantwortlich aeruginosa. Diese letzte Hypothese wurde bestätigt. Tatsächlich C. albicans Kolonisierung führte zu einem Priming der angeborenen Immunität through IL-22, vor allem von angeborenen lymphoiden Zellen sezerniert wird, was zu einer erhöhten bakteriellen Clearance und einer verminderten Lungenverletzung 12.
Zusammenfassend ist der Host ein zentraler Akteur in der Interaktion zwischen Mikroorganismen Modulation der angeborenen Immunantwort und die verschiedene Entzündungszelltypen. Während diese komplexe Immun Wechselwirkungen können in vitro präpariert werden die anfänglichen Hypothesen kann nur durch geeignete In-vivo-Modellen zur Verfügung gestellt werden. Das folgende Protokoll zeigt ein Beispiel der in vivo-Untersuchung von Wirt-Pathogen-vermittelte Wechselwirkung, um andere Mikroorganismen angepasst werden kann.
Tiermodelle, insbesondere Säugetieren, nützlich sind, um komplexe Mechanismen der Wirt-Pathogen-Wechselwirkung in den Bereichen Immunität aufzuklären. Natürlich ist der Informationsbedarf, erhältlich nur aus Tiermodellen müssen wesentlich sein; Andernfalls muss die Verwendung von Tieren durch In-vitro-Modelle ersetzt werden. Dieses Tiermodell zeigt die Erkenntnis, dass nur von einem Tiermodell zur Verfügung gestellt werden kann, da die Wechselwirkung zwischen Pathogene wird durch Reaktion eines mehrkomp…
The authors have nothing to disclose.
The authors would like to acknowledge the University of Lille and the Pasteur Institute of Lille, especially Thierry Chassat and Jean-Pierre Decavel, responsible for animal housing breeding safety and husbandry. This work was supported by the “Société de Pathologies Infectieuses de Langue Française” (SPILF).
Sevorane, Sevoflurane | Abott | 05458-02 | 250 mL plastic bottle |
Fluorescence Reader Mithras LB940 | Berthold Technologies | reference in first column | no comment |
Bromo-cresol purple agar | Biomerieux | 43021 | x20 per unit |
Pentobarbital sodique 5,47% | CEVA | 6742145 | 100 mL plastic bottle |
2-headed valve | Distrimed | 92831 | no comment |
Sterile inoculation loop 10 µL | Dutscher | 10175 | x1000 conditioning |
Insuline syringes 1 mL | Dutscher | 30003 | per 100 conditioning |
2 positions Culture tube 8 mL | Dutscher | 64300 | no comment |
Ultrospec 10 | General Electric life sciences | 80-2116-30 | no comment |
Hemolysis tubes 13 x 75 mm | Gosselin | W1773X | per 100 |
PBS – Phosphate-Buffered Saline | Life technologies | 10010023 | packaged in 500 mL |
amikacin 1g | Mylan | 62516778 | per 10 |
Heparin 10 000 UI in 2 mL | Pan pharma | 9128701 | x 10 per unit |
RAL 555 coloration kit | RAL Diagnostics | 361550 | 3 flacons of 100 mL |
1,5 mL microcentrifuge tube | Sarstedt | 55.526.006 | x 1000 |
Transparent 300 µL 96-well plate | Sarstedt | 82 1581500 | no comment |
Yest-peptone-Dextrose Broth | Sigma | 95763 | in powder |
FITC-albumin | Sigma | A9771 | in powder |
Luria Bertani Broth | Sigma | L3022 | in powder |
25-gauge needle | Terumo or unisharp | A231 | x100 conditioning |
Cytocentrifuge | Thermo Scientific | A78300003 | no comment |