Summary

髪の由来ケラチノサイトを使用した統合フリーヒト誘導多能性幹細胞の生成

Published: August 20, 2015
doi:

Summary

This manuscript provides a step-by-step procedure for the derivation and maintenance of human keratinocytes from plucked hair and subsequent generation of integration-free human induced pluripotent stem cells (hiPSCs) by episomal vectors.

Abstract

Recent advances in reprogramming allow us to turn somatic cells into human induced pluripotent stem cells (hiPSCs). Disease modeling using patient-specific hiPSCs allows the study of the underlying mechanism for pathogenesis, also providing a platform for the development of in vitro drug screening and gene therapy to improve treatment options. The promising potential of hiPSCs for regenerative medicine is also evident from the increasing number of publications (>7000) on iPSCs in recent years. Various cell types from distinct lineages have been successfully used for hiPSC generation, including skin fibroblasts, hematopoietic cells and epidermal keratinocytes. While skin biopsies and blood collection are routinely performed in many labs as a source of somatic cells for the generation of hiPSCs, the collection and subsequent derivation of hair keratinocytes are less commonly used. Hair-derived keratinocytes represent a non-invasive approach to obtain cell samples from patients. Here we outline a simple non-invasive method for the derivation of keratinocytes from plucked hair. We also provide instructions for maintenance of keratinocytes and subsequent reprogramming to generate integration-free hiPSC using episomal vectors.

Introduction

ヒト誘導多能性幹細胞(hiPSCs)の発見は、患者特異的幹細胞1-3の生成のための実行可能な方法を提供し、再生医療の分野に革命をもたらしました。 hiPSCsは正常線維芽細胞4,5を含む種々の体細胞タイプ、造血細胞6,7、尿8およびケラチノサイト9,10からの腎上皮細胞から生成されています。これまで、皮膚線維芽細胞および造血細胞は、患者固有のiPS細胞を生成するための最も一般的に使用される細胞の供給源を表します。おそらく、これは、皮膚生検及び採血ルーチン医療処置および多くの国で確立された患者の血液または皮膚サンプルの大規模なバイオバンクであるという事実によるものです。

侵襲的な抽出方法を必要とする血液細胞および皮膚線維芽細胞とは対照的に、ケラチノサイトはhiPSCの生成のために容易にアクセスできる細胞型を表します。 KeratinocytESは、皮膚の外側表皮バリアを形成し、また、爪及び髪11に見出されるケラチン豊富な上皮細胞です。特に、ケラチノサイトは毛包、内毛根鞘(IRS)細胞(12、 図1)と一緒に毛幹をカバーし、外部の細胞膜の外毛根鞘(ORS)に記載されています。ヘアコレクションは医療関係者の支援を必要としない簡単な手順であるように、患者が収集し、大幅hiPSCの世代のための患者サンプルの収集を容易にするであろう実験室に自分の毛髪サンプルを送信するための機会を提供しています。表皮角化細胞はまた、hiPSCの生成9,13のための出発細胞としてのケラチノサイトを使用する利点に加えて、線維芽細胞と比較してより高い初期化の効率と高速再プログラミング速度を持っています。さらに、hiPSCsはまた毛包内の他の細胞集団を使用して生成することができ、毛包14,15の基部に位置毛乳頭細胞を含みます。

毛由来の細胞を用いてiPS細胞の発生以前の報告は、多くの場合、レトロウイルスまたはレンチウイルスベースの再プログラミング法9,14,15を利用します。しかし、これらのウイルスの方法は、再プログラミング中に外国の導入遺伝子の望ましくないゲノム組込みをご紹介します。対照的に、エピソームベクターの使用は、統合フリー性IPSC 4を生成するために実行可能な、非ウイルス性の再プログラミング方法を示しています。我々は以前に効率的にエピソームベクター13を使用してhiPSCsにケラチノサイトを再プログラムするための簡単な、費用対効果および非ウイルス法を開発しました。ここでは、hiPSCsを生成するためのケラチノサイトおよびその後の再プログラミングの撥髪、拡張やメンテナンスからケラチノサイトの導出を含むケラチノサイト由来hiPSCsの生成のための詳細なプロトコルを提供します。

Protocol

個人からの人間の毛髪サンプルの収集は、ホスト機関における人間研究倫理委員会の倫理的な承認を必要とし、機関のガイドラインに準拠して行う必要があります。 撥弦楽器髪からケラチノサイトの1の単離アイスO / Nで( すなわち、マトリゲル)雪解け細胞外マトリックス(ECM)ソリューションを提供します。 予備冷却したピペットチップを使用?…

Representative Results

成長期(成長期)、退行期(退行期)および休止期(休止期)20,21:髪は成長サイクルの3つの異なる段階を通過します。成長期毛包上皮の複数の層を含んでいます。これらの層は、ORS、IRSと毛幹( 図1)を含みます。成長期の毛は最終的ORSと毛幹分化の終了のアポトーシスによってマークされて退行期への移行受けます。最後に、アポトーシスが停止し、休止期の毛包が?…

Discussion

患者特有のhiPSCsの生成は、in vitroでの病気の細胞型において病因を研究するためのユニークなアプローチを提供し、また、疾患の表現型を救出することができる新規分子を同定するための薬物スクリーニングのためのプラットフォームを提供します。 hiPSCsを使用して、この疾患のモデリングアプローチは、QT延長症候群、ハンチントン病、パーキンソン病および筋萎縮性側索硬化症

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors wish to thank Harene Ranjithakumaran and Stacey Jackson for technical support. This work was supported in part by grants from the National Health and Medical Research Council (R.C.B. Wong, A. Pébay), the University of Melbourne (R.C.B. Wong), Retina Australia (R.C.B. Wong, S.S.C. Hung, A. Pébay) and the Ophthalmic Research Institute of Australia (R.C.B. Wong, S.S.C. Hung, A. Pébay); Australian Research Council Future Fellowship (A. Pébay, FT140100047), Cranbourne Foundation Fellowship (R.C.B. Wong); intramural funding from the National Institutes for Health (R.C.B. Wong, S.S.C. Hung) and operational infrastructure support from the Victorian Government.

Materials

Antibiotic Mix: 
250 ng/ml Antimycotic amphotericin B Sigma A2942-20ml Antibiotic mix is made up in PBS. 
1X Penicillin/Streptomycin Invitrogen 15140-122
PBS (-) Invitrogen 14190-144
Knockout Serum Replacement (KSR) medium:  KSR medium is filtered using Stericup (Millipore, #SCGPU05RE) before use. bFGF is added fresh to the media before use.
20% knockout serum replacement (KSR) Invitrogen 10828-028
DMEM/F12 with glutamax Invitrogen 10565-042
1× MEM non-essential amino acid Invitrogen 11140-050
 0.5× Penicillin/Streptomycin Invitrogen 15140-122
 0.1 mM β-mercaptoethanol Invitrogen 21985
 bFGF (10 ng/ml, added fresh) Millipore GF003
Keratinocyte medium: 
 EpiLife with 60 µM Calcium Invitrogen M-EPI-500-CA
1× Human keratinocyte growth supplement (HKGS) Invitrogen S-001-5
Fetal Bovine Serum (FBS) medium:  FBS medium is filtered using Stericup (Millipore, #SCGPU05RE)  before use.
10% fetal bovine serum (FBS) Invitrogen 26140079
DMEM  Invitrogen 11995-073
0.5× Penicillin/Streptomycin Invitrogen 15140-122
2 mM L-glutamine Invitrogen 25030
0.25% trypsin-EDTA Invitrogen 25200-056
Extracellular Matrix (ECM):
Matrigel Corning  354234 Aliquot Matrigel stock and store in -80°C following manufacturer’s instructions. Stock concentration of Matrigel varies slightly from batch to batch (~9mg/ml). We recommend to use 200µl matrigel for coating a 12-well plate (~150µg/well). 
Coating Matrix Kit  Invitrogen R-011-K
Plasmids:  Note that pCXLE-eGFP is only used for monitoring transfection efficiency and is not required for reprogramming.
-          pCXLE-eGFP Addgene 27082
-          pCXLE-hOct3/4-shP53F Addgene 27077
-          pCXLE-hSK Addgene 27078
-          pCXLE-hUL Addgene 27080
Transfection reagent Fugene HD Promega E231B
Gelatin (from porcine skin) Sigma G1890 Make up 0.1% gelatin in distilled water. Autoclave before use. 
Reduced Serum medium: OPTI-MEM Invitrogen 31985062
Accutase Sigma A6964-100ml
Mouse embryonic fibroblast (MEF) feeder MEF can be inactivated by mitomycin C treatment or irradiation as described previously 16.
26G needle Terumo NN2613R
6-well plate (tissue culture treated) BD Biosciences 353046
12-well plate (tissue culture treated) BD Biosciences 353043
10 cm dish (tissue culture treated) BD Biosciences 353003
Dispase Invitrogen 17105-041 Use at 10mg/ml
Collagenase IV Invitrogen 17104-019 Use at 1mg/ml
TRA-160 antibody Millipore MAB4360 Use at 5µg/ml
OCT4 antibody Santa Cruz SC-5279 Use at 5µg/ml
NANOG antibody R&D Systems AF1997 Use at 10µg/ml
MycoAlert Detection kit Lonza LT07-418

Referências

  1. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663-676 (2006).
  2. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  3. Yu, J., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 318, 1917-1920 (2007).
  4. Okita, K., et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 8, 409-412 (2011).
  5. Park, I. H., et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451, U141-U141 (2008).
  6. Okita, K., et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 31, 458-466 (2013).
  7. Dowey, S. N., Huang, X., Chou, B. K., Ye, Z., Cheng, L. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc. 7, 2013-2021 (2012).
  8. Zhou, T., et al. Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol. 22, 1221-1228 (2011).
  9. Aasen, T., et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 26, 1276-1284 (2008).
  10. Peters, A., Zambidis, E., Ye, K., Jin, S. Chapter 16. Generation of nonviral integration-free induced pluripotent stem cells from plucked human hair follicles. Human Embryonic and Induced Pluripotent Stem Cells: Lineage-Specific Differentiation Protocols.Springer Protocols Handbooks. , 203-227 (2012).
  11. Fuchs, E. Scratching the surface of skin development. Nature. 445, 834-842 (2007).
  12. Limat, A., Noser, F. K. Serial cultivation of single keratinocytes from the outer root sheath of human scalp hair follicles. J Invest Dermatol. 87, 485-488 (1986).
  13. Piao, Y., Hung, S. S., Lim, S. Y., Wong, R. C., Ko, M. S. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors. Stem Cells Transl Med. 3, 787-791 (2014).
  14. Higgins, C. A., et al. Reprogramming of human hair follicle dermal papilla cells into induced pluripotent stem cells. J Invest Dermatol. 132, 1725-1727 (2012).
  15. Muchkaeva, I. A., et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta naturae. 6, 45-53 (2014).
  16. Naaldijk, Y., Friedrich-Stockigt, A., Sethe, S., Stolzing, A. Comparison of different cooling rates for fibroblast and keratinocyte cryopreservation. J Tissue Eng Regen. , (2013).
  17. Sporl, F., et al. Real-time monitoring of membrane cholesterol reveals new insights into epidermal differentiation. J Invest Dermatol. 130, 1268-1278 (2010).
  18. Conner, D. A., et al., Ausubel, F. N., et al. Mouse embryo fibroblast (MEF) feeder cell preparation. Current protocols in molecular biology. 23, Unit 23 22 (2001).
  19. Pebay, A., et al. Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells. 23, 1541-1548 (2005).
  20. Myung, P., Ito, M. Dissecting the bulge in hair regeneration. J Clin Invest. 122, 448-454 (2012).
  21. Alonso, L., Fuchs, E. The hair cycle. J Cell Sci. 119, 391-393 (2006).
  22. Robinton, D. A., Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature. 481, 295-305 (2012).
  23. Soares, F. A., Sheldon, M., Rao, M., Mummery, C., Vallier, L. International coordination of large-scale human induced pluripotent stem cell initiatives: Wellcome Trust and ISSCR workshops white paper. Stem cell reports. 3, 931-939 (2014).
  24. McKernan, R., Watt, F. M. What is the point of large-scale collections of human induced pluripotent stem cells. Nat Biotechnol. 31, 875-877 (2013).
  25. Utikal, J., et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature. 460, U1145-U1112 (2009).
  26. Xu, Y., et al. Proliferation rate of somatic cells affects reprogramming efficiency. J Biol Chem. 288, 9767-9778 (2013).
  27. Liu, J., et al. Late passage human fibroblasts induced to pluripotency are capable of directed neuronal differentiation. Cell Transplant. 20, 193-203 (2011).
  28. Huallachain, M., Karczewski, K. J., Weissman, S. M., Urban, A. E., Snyder, M. P. Extensive genetic variation in somatic human tissues. Proc Natl Acad Sci U S A. 109, 18018-18023 (2012).
  29. Abyzov, A., et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature. 492, 438-442 (2012).
check_url/pt/53174?article_type=t

Play Video

Citar este artigo
Hung, S. S., Pébay, A., Wong, R. C. Generation of Integration-free Human Induced Pluripotent Stem Cells Using Hair-derived Keratinocytes. J. Vis. Exp. (102), e53174, doi:10.3791/53174 (2015).

View Video