Summary

集成的无人类诱导多能干细胞的生成方法头发衍生角质形成细胞

Published: August 20, 2015
doi:

Summary

This manuscript provides a step-by-step procedure for the derivation and maintenance of human keratinocytes from plucked hair and subsequent generation of integration-free human induced pluripotent stem cells (hiPSCs) by episomal vectors.

Abstract

Recent advances in reprogramming allow us to turn somatic cells into human induced pluripotent stem cells (hiPSCs). Disease modeling using patient-specific hiPSCs allows the study of the underlying mechanism for pathogenesis, also providing a platform for the development of in vitro drug screening and gene therapy to improve treatment options. The promising potential of hiPSCs for regenerative medicine is also evident from the increasing number of publications (>7000) on iPSCs in recent years. Various cell types from distinct lineages have been successfully used for hiPSC generation, including skin fibroblasts, hematopoietic cells and epidermal keratinocytes. While skin biopsies and blood collection are routinely performed in many labs as a source of somatic cells for the generation of hiPSCs, the collection and subsequent derivation of hair keratinocytes are less commonly used. Hair-derived keratinocytes represent a non-invasive approach to obtain cell samples from patients. Here we outline a simple non-invasive method for the derivation of keratinocytes from plucked hair. We also provide instructions for maintenance of keratinocytes and subsequent reprogramming to generate integration-free hiPSC using episomal vectors.

Introduction

人类诱导多能干细胞(人iPS细胞)的发现已经彻底改变了再生医学的领域中,提供用于产生患者特异性干细胞1-3的一种可行的方法。人iPS细胞已经成功地从不同的体细胞类型,包括成纤维细胞4,5,造血细胞6,7,从尿8肾小管上皮细胞和角质形成细胞9,10产生的。迄今为止,皮肤成纤维细胞和造血细胞代表了最常用的细胞来源,用于产生病人的具体的iPSC。可以说,这是由于这样的事实,即皮肤活检和采血是常规的医疗程序,并已在许多国家建立大型生物库患者血液或皮肤的样品。

相较于血细胞和皮肤成纤维需要侵入性的提取方法,角质代表一个方便的细胞类型的hiPSC产生。 KeratinocytES是形成皮肤的外表皮屏障,并且还发现,在指甲和头发角蛋白11的富上皮细胞。特别是,角朊细胞可以在毛囊,即覆盖毛干连同内根鞘(IRS)的细胞(12, 图1)的外部的蜂窝层的外根鞘(ORS)中找到。由于毛发收集是一个简单的过程,不需要医务人员的协助下,它提供了一个机会,让患者收集并发送自己的头发样品的实验室,这将极大地方便了hiPSC代病人样本的采集。表皮角化细胞也有较高的重编程效率和更快的重编程动力学相比的成纤维细胞,加入到用角质形成细胞作为起始细胞hiPSC代9,13的优点。此外,人iPS细胞还可以使用毛囊内其他细胞群产生,包括位于毛囊14,15的底部的毛乳头细胞。

IPSC的代发使用来源的细胞以前的报告中经常使用逆转录病毒或慢病毒为基础的重编程方法9,14,15。然而,这些病毒方法的重新编程过程中引进国外转基因不良基因组整合。相比较而言,使用游离型载体的代表一个可行的,非病毒重新编程方法来生成积分-自由iPSCs的4。我们以前曾开发出一种简单,经济有效和非病毒的方法来有效地重新编程角化细胞到使用附加型载体13人iPS细胞。在这里,我们提供的角质细胞衍生的人iPS细胞,包括来自弹拨头发,扩展和维护的角质形成和随后的重新编程,以产生iPS细胞的角质形成细胞的推导的生成的详细协议。

Protocol

从个人人类头发样品的集合需要通过人的研究伦理委员会在宿主机构伦理委员会批准,并应符合进行与机构准则。 从弹拨头发1.隔离的角质形成细胞解冻细胞外基质(ECM)解决方案( 即基质胶)在冰O / N。 用预冷的枪头,加入200微升的ECM溶液到12毫升冷冻的DMEM / F12培养基。外套一个12孔板用1ml稀释的ECM溶液到每孔中。孵育涂板O / N在37℃。在使用前预热DMEM…

Representative Results

毛发经过生长周期3个不同阶段:生长期(生长阶段),退行期(回归阶段)和休止期(休息阶段)20,21。生长期毛囊中含有上皮多层;这些层包括ORS,IRS和毛干( 图1)。毛发生长初期最终经历过渡到退行期阶段,该阶段的特点是ORS的和终止的毛干分化的细胞凋亡。最后,退行期的头发过渡到休止期,在细胞凋亡停止,休止期毛囊变得与静态特征休止期隆起20,21。 <p …

Discussion

患者特异性人iPS细胞的产生提供了用于在体外研究发病在患病细胞类型的独特方法,并且还提供了用于药物筛选平台,以确定新的分子,可以拯救疾病表型。使用人iPS细胞这种疾病建模方法已取得了令人鼓舞的结果,适用于各种疾病,包括长QT综合征,亨廷顿氏病,帕金森氏病和肌萎缩性侧索硬化22。若干举措已经展开,建立以病人特异性iPS细胞,其中包括在美国,欧洲,澳大利亚?…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors wish to thank Harene Ranjithakumaran and Stacey Jackson for technical support. This work was supported in part by grants from the National Health and Medical Research Council (R.C.B. Wong, A. Pébay), the University of Melbourne (R.C.B. Wong), Retina Australia (R.C.B. Wong, S.S.C. Hung, A. Pébay) and the Ophthalmic Research Institute of Australia (R.C.B. Wong, S.S.C. Hung, A. Pébay); Australian Research Council Future Fellowship (A. Pébay, FT140100047), Cranbourne Foundation Fellowship (R.C.B. Wong); intramural funding from the National Institutes for Health (R.C.B. Wong, S.S.C. Hung) and operational infrastructure support from the Victorian Government.

Materials

Antibiotic Mix: 
250 ng/ml Antimycotic amphotericin B Sigma A2942-20ml Antibiotic mix is made up in PBS. 
1X Penicillin/Streptomycin Invitrogen 15140-122
PBS (-) Invitrogen 14190-144
Knockout Serum Replacement (KSR) medium:  KSR medium is filtered using Stericup (Millipore, #SCGPU05RE) before use. bFGF is added fresh to the media before use.
20% knockout serum replacement (KSR) Invitrogen 10828-028
DMEM/F12 with glutamax Invitrogen 10565-042
1× MEM non-essential amino acid Invitrogen 11140-050
 0.5× Penicillin/Streptomycin Invitrogen 15140-122
 0.1 mM β-mercaptoethanol Invitrogen 21985
 bFGF (10 ng/ml, added fresh) Millipore GF003
Keratinocyte medium: 
 EpiLife with 60 µM Calcium Invitrogen M-EPI-500-CA
1× Human keratinocyte growth supplement (HKGS) Invitrogen S-001-5
Fetal Bovine Serum (FBS) medium:  FBS medium is filtered using Stericup (Millipore, #SCGPU05RE)  before use.
10% fetal bovine serum (FBS) Invitrogen 26140079
DMEM  Invitrogen 11995-073
0.5× Penicillin/Streptomycin Invitrogen 15140-122
2 mM L-glutamine Invitrogen 25030
0.25% trypsin-EDTA Invitrogen 25200-056
Extracellular Matrix (ECM):
Matrigel Corning  354234 Aliquot Matrigel stock and store in -80°C following manufacturer’s instructions. Stock concentration of Matrigel varies slightly from batch to batch (~9mg/ml). We recommend to use 200µl matrigel for coating a 12-well plate (~150µg/well). 
Coating Matrix Kit  Invitrogen R-011-K
Plasmids:  Note that pCXLE-eGFP is only used for monitoring transfection efficiency and is not required for reprogramming.
-          pCXLE-eGFP Addgene 27082
-          pCXLE-hOct3/4-shP53F Addgene 27077
-          pCXLE-hSK Addgene 27078
-          pCXLE-hUL Addgene 27080
Transfection reagent Fugene HD Promega E231B
Gelatin (from porcine skin) Sigma G1890 Make up 0.1% gelatin in distilled water. Autoclave before use. 
Reduced Serum medium: OPTI-MEM Invitrogen 31985062
Accutase Sigma A6964-100ml
Mouse embryonic fibroblast (MEF) feeder MEF can be inactivated by mitomycin C treatment or irradiation as described previously 16.
26G needle Terumo NN2613R
6-well plate (tissue culture treated) BD Biosciences 353046
12-well plate (tissue culture treated) BD Biosciences 353043
10 cm dish (tissue culture treated) BD Biosciences 353003
Dispase Invitrogen 17105-041 Use at 10mg/ml
Collagenase IV Invitrogen 17104-019 Use at 1mg/ml
TRA-160 antibody Millipore MAB4360 Use at 5µg/ml
OCT4 antibody Santa Cruz SC-5279 Use at 5µg/ml
NANOG antibody R&D Systems AF1997 Use at 10µg/ml
MycoAlert Detection kit Lonza LT07-418

Referências

  1. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663-676 (2006).
  2. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  3. Yu, J., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 318, 1917-1920 (2007).
  4. Okita, K., et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 8, 409-412 (2011).
  5. Park, I. H., et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451, U141-U141 (2008).
  6. Okita, K., et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 31, 458-466 (2013).
  7. Dowey, S. N., Huang, X., Chou, B. K., Ye, Z., Cheng, L. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nat Protoc. 7, 2013-2021 (2012).
  8. Zhou, T., et al. Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol. 22, 1221-1228 (2011).
  9. Aasen, T., et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 26, 1276-1284 (2008).
  10. Peters, A., Zambidis, E., Ye, K., Jin, S. Chapter 16. Generation of nonviral integration-free induced pluripotent stem cells from plucked human hair follicles. Human Embryonic and Induced Pluripotent Stem Cells: Lineage-Specific Differentiation Protocols.Springer Protocols Handbooks. , 203-227 (2012).
  11. Fuchs, E. Scratching the surface of skin development. Nature. 445, 834-842 (2007).
  12. Limat, A., Noser, F. K. Serial cultivation of single keratinocytes from the outer root sheath of human scalp hair follicles. J Invest Dermatol. 87, 485-488 (1986).
  13. Piao, Y., Hung, S. S., Lim, S. Y., Wong, R. C., Ko, M. S. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors. Stem Cells Transl Med. 3, 787-791 (2014).
  14. Higgins, C. A., et al. Reprogramming of human hair follicle dermal papilla cells into induced pluripotent stem cells. J Invest Dermatol. 132, 1725-1727 (2012).
  15. Muchkaeva, I. A., et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta naturae. 6, 45-53 (2014).
  16. Naaldijk, Y., Friedrich-Stockigt, A., Sethe, S., Stolzing, A. Comparison of different cooling rates for fibroblast and keratinocyte cryopreservation. J Tissue Eng Regen. , (2013).
  17. Sporl, F., et al. Real-time monitoring of membrane cholesterol reveals new insights into epidermal differentiation. J Invest Dermatol. 130, 1268-1278 (2010).
  18. Conner, D. A., et al., Ausubel, F. N., et al. Mouse embryo fibroblast (MEF) feeder cell preparation. Current protocols in molecular biology. 23, Unit 23 22 (2001).
  19. Pebay, A., et al. Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells. 23, 1541-1548 (2005).
  20. Myung, P., Ito, M. Dissecting the bulge in hair regeneration. J Clin Invest. 122, 448-454 (2012).
  21. Alonso, L., Fuchs, E. The hair cycle. J Cell Sci. 119, 391-393 (2006).
  22. Robinton, D. A., Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature. 481, 295-305 (2012).
  23. Soares, F. A., Sheldon, M., Rao, M., Mummery, C., Vallier, L. International coordination of large-scale human induced pluripotent stem cell initiatives: Wellcome Trust and ISSCR workshops white paper. Stem cell reports. 3, 931-939 (2014).
  24. McKernan, R., Watt, F. M. What is the point of large-scale collections of human induced pluripotent stem cells. Nat Biotechnol. 31, 875-877 (2013).
  25. Utikal, J., et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature. 460, U1145-U1112 (2009).
  26. Xu, Y., et al. Proliferation rate of somatic cells affects reprogramming efficiency. J Biol Chem. 288, 9767-9778 (2013).
  27. Liu, J., et al. Late passage human fibroblasts induced to pluripotency are capable of directed neuronal differentiation. Cell Transplant. 20, 193-203 (2011).
  28. Huallachain, M., Karczewski, K. J., Weissman, S. M., Urban, A. E., Snyder, M. P. Extensive genetic variation in somatic human tissues. Proc Natl Acad Sci U S A. 109, 18018-18023 (2012).
  29. Abyzov, A., et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature. 492, 438-442 (2012).
check_url/pt/53174?article_type=t

Play Video

Citar este artigo
Hung, S. S., Pébay, A., Wong, R. C. Generation of Integration-free Human Induced Pluripotent Stem Cells Using Hair-derived Keratinocytes. J. Vis. Exp. (102), e53174, doi:10.3791/53174 (2015).

View Video