Nous démontrons comment déterminer la distribution de taille des nanocristaux semi-conducteurs de manière quantitative en utilisant une spectroscopie Raman en utilisant un modèle de confinement phonon multi-particule définie analytiquement. Les résultats obtenus sont en excellent accord avec les autres techniques d'analyse de taille, comme la microscopie électronique à transmission et spectroscopie de photoluminescence.
L'analyse de la distribution de taille de nanocristaux est une exigence critique pour la transformation et l'optimisation de leurs propriétés de taille-dépendante. Les techniques couramment utilisées pour l'analyse de la taille sont la microscopie électronique à transmission (TEM), diffraction des rayons X (DRX) et spectroscopie de photoluminescence (PL). Ces techniques, cependant, ne sont pas appropriées pour l'analyse de la distribution de taille des nanocristaux dans un rapide, non destructive et de façon fiable en même temps. Notre objectif dans ce travail est de démontrer que la distribution de taille des nanocristaux semi-conducteurs qui sont soumis à des effets phonon confinement dépendant de la taille, peut être estimé quantitativement de manière non destructive, rapide et fiable en utilisant la spectroscopie Raman. En outre, les distributions de formats différents peuvent être sondées séparément, et leurs rapports volumétriques respectives peuvent être estimées en utilisant cette technique. Afin d'analyser la distribution de taille, nous avons formulized une expression analytique de PCM-particule et une projected il sur une fonction de distribution générique qui représentera la distribution en taille des nanocristaux analysé. Comme une expérience modèle, nous avons analysé la distribution des tailles des nanocristaux de silicium autoportants (Si-CN) avec des distributions de taille multi-modales. Les distributions de taille estimés sont en excellent accord avec les résultats TEM et PL, révélant la fiabilité de notre modèle.
Nanocristaux semi-conducteurs attirent l'attention que leurs propriétés électroniques et optiques peuvent être réglés en changeant simplement leur taille dans la gamme par rapport à leurs rayons exciton-Bohr respective. 1 Ces caractéristiques uniques de taille dépendant font ces nanocristaux pertinente pour diverses applications technologiques. Par exemple, les effets support de multiplication, observé quand un photon d'énergie élevée est absorbée par les nanocristaux de CdSe, Si et Ge, peut être utilisé dans le concept de la conversion du spectre dans des applications de piles solaires; 2 – émission optique 4 ou dépendant de la taille à partir de PbS-CN et Si-CN peuvent être utilisés dans la diode électroluminescente (LED) des applications. 5,6 Une connaissance et un contrôle précis sur la distribution de la taille des nanocristaux va donc jouer un rôle déterminant sur la fiabilité et la performance de ces applications technologiques fondées de nanocristaux.
Les techniques couramment utilisées pour la taille distribution et analyse de la morphologie des nanocristaux peuvent être énumérées comme diffraction des rayons X (XRD), microscopie électronique à transmission (TEM), spectroscopie de photoluminescence (PL), et la spectroscopie Raman. XRD est une technique cristallographique révèle que des informations morphologiques du matériau analysé. De l'élargissement du pic de diffraction, l'estimation de la taille du nanocristal est possible, 7 Cependant, l'obtention d'un données claire est généralement beaucoup de temps. En outre, XRD ne peut permettre le calcul de la moyenne de la distribution de taille des nanocristaux. Dans l'existence de distributions de taille multimodaux, analyse de la taille avec XRD peut être trompeur et aboutir à des interprétations erronées. TEM est une technique puissante qui permet l'imagerie des nanocristaux. 8 Bien que TEM est en mesure de révéler la présence de distributions individuelles dans une distribution de taille multi-modale, question de préparation de l'échantillon est toujours un effort pour être passé avant les mesures. En outre, en travaillant sur nano denseensembles de cristal avec des tailles différentes est un défi en raison de la difficulté de l'imagerie de nanocristal individuel. Spectroscopie de photoluminescence (PL) est une technique d'analyse optique, et des nanocristaux optiquement actifs peut être diagnostiquée. Distribution de taille des nanocristaux est obtenu à partir de l'émission dépendant de la taille. 9 En raison de leurs propriétés optiques pauvres de nanoparticules indirects de la bande de Gap, de grandes nanocristaux qui ne sont pas soumis à l'enfermement des effets, et les petits nanocristaux de défauts riche ne peut pas être détecté par PL et la taille observée la distribution est limitée seulement à nanocristaux avec de bonnes propriétés optiques. Bien que chacune de ces techniques mentionnés ci-dessus a ses propres avantages, aucun d'entre eux ont la capacité de répondre aux attentes (qui est d'être rapide, non destructive, et fiable) technique d'analyse de la taille de et idéalisée.
Un autre moyen de l'analyse de distribution de taille des nanocristaux est de spectroscopie Raman. Spectroscopie Raman est largement disponibledans la plupart des laboratoires, et elle est une technique rapide et non destructive. En outre, dans la plupart des cas, la préparation des échantillons est pas nécessaire. La spectroscopie Raman est une technique de vibration, qui peut être utilisé pour obtenir des informations sur différentes morphologies (cristalline ou amorphe), et des informations concernant la taille (à partir du décalage dépendant de la taille dans les modes de phonons qui apparaissent dans le spectre de fréquences) du matériau analysé . 10 La caractéristique unique de la spectroscopie Raman est que, tandis que les changements de taille dépendant sont observés comme un changement dans le spectre de fréquence, la forme de la crête de phonons (élargissement, l'asymétrie) donne des informations sur la forme de la distribution de la taille des nanocristaux. Par conséquent, il est en principe possible d'extraire les informations nécessaires, à savoir, la taille moyenne et le facteur de forme, à partir de spectre Raman à obtenir la distribution de taille des nanocristaux de analysées. Dans le cas de distributions de taille multimodaux sous-distributions peuvent aussi être identifiés séparément par deconvolution du spectre Raman expérimentale.
Dans la littérature, deux théories sont communément appelés modéliser l'effet de la distribution de taille des nanocristaux sur la forme du spectre Raman. Le modèle liaison polarisabilité (BPM) 11 décrit la polarisabilité d'un nanocristal de la contribution de tous les liens au sein de cette taille. Le modèle phonon confinement à une particule (PCM) 10 utilise des variables physiques dépendant de la taille, à savoir, l'élan de cristal, de la fréquence et de la dispersion des phonons, et le degré de confinement, pour définir le spectre Raman d'un nanocristal avec une taille spécifique. Étant donné que ces variables physiques dépendent de la taille, une représentation analytique de la PCM qui peut être explicitement formulized en fonction de la taille du nanocristal peut être définie. La projection sur cette expression générique en fonction de distribution de taille sera donc en mesure d'expliquer l'effet de la distribution granulométrique à l'intérieur de la PCM, qui peut être utilisé pour déterminer la nanocrRépartition de la taille de la ystal spectre Raman expérimentale. 12
Premier point de discussion est les étapes critiques dans le protocole. Afin de ne pas avoir des pics qui se chevauchent avec le matériau d'intérêt, il est important d'utiliser un autre type de matériau de substrat tel que mentionné à l'étape 1.2. Par exemple, si Si-CN sont d'intérêt, ne pas utiliser substrat de silicium pour les mesures Raman. Dans la figure 1 a, par exemple, Si-CN ont été synthétisés sur des supports en plexiglas, qui a le signal complèt…
The authors have nothing to disclose.
This work was part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). Authors of this work thank M. J. F. van de Sande for skillful technical assistance, M. A. Verheijen for TEM images, and the group of Tom Gregorkiewicz for PL measurements.
Raman Spectroscopy | Renishaw | In Via | Equipped with 514 nm Ar ion laser |
Wire 3.0 | Renishaw | Raman spectroscopy record tool | |
Mathematica | Wolfram | For fitting function and size determination | |
Substrate | Plexiglass (to avoid signal coincidence with Si-NCs) | ||
Si wafer | Reference to Si-NC peak position | ||
Photoluminescence Spectroscopy | 334 nm Ar laser. For optical size distribution. | ||
Transmission Electron Microscopy | Beam intensity 300 kV. For nanocrystal size and morphology determination. |