Summary

Met behulp van polystyreen<em> Block</em> Poly (acrylzuur) -gecoate Metal Nanodeeltjes als monomeren voor hun homo- en co-polymerisatie

Published: July 09, 2015
doi:

Summary

We report protocols for “polymerizing” various types of polymer-encapsulated metal nanoparticles into long chains of “homo-“ and “co-polymers”.

Abstract

We present a template-free method for “polymerizing” nanoparticles into long chains without side branches. A variety of nanoparticles are encapsulated in polystyrene-block-poly(acrylic acid) (PSPAA) shells and then used as monomers for their self-assembly. Spherical PSPAA micelles upon acid treatment are known to assemble into cylindrical micelles. Exploiting this tendency, the core-shell nanoparticles are induced to aggregate, coalesce, and then transform into long chains. When more than one type of nanoparticles are used, random and block “copolymers” of nanoparticles can be obtained. Detailed procedures are reported for the PSPAA encapsulation of nanoparticles, homo- and co-polymerization of the core-shell nanoparticles, separation and purification of the resulting nanoparticle chains. Transformations of single-line chains into double- and triple-line chains are also presented. The synergy between the polymer shell and the embedded nanoparticles leads to an unusual chain-growth polymerization mode, giving long nanoparticle chains that are distinct from the products of the traditional step-growth aggregation process.

Introduction

Despite great advances in the synthesis of nanoparticles over the past two decades, their orderly assembly remains a great challenge. Our synthetic capabilities in putting the basic building blocks together are of critical importance for the exploration and exploitation of their synergistic effects and collective properties. Thus, developing new reaction pathways and exploring the underlying mechanisms are the stepping stones towards the rational synthesis of complex nanodevices.

Among the rich structural variety of possible nanoparticle assemblies, one-dimensional (1D) chains have shown useful applications in nanoelectronics, optoelectronics, and biosensors.1-4 Typically, self-assembly of nanoparticles into chain-like structures requires magnetic or electric dipole interactions, anisotropic electrostatic repulsion, or external templates.5-11 For dipole-induced assembly, one needs nanoparticles with permanent dipoles, such as magnetic nanoparticles and semiconductor nanoparticles under special environments.12-15 For nanoparticles with no permanent dipole, it has been shown that the relatively weaker electrostatic repulsion at the ends of the nanoparticle chains can promote the selective attachment of nanoparticle thereon and thus, 1D chain growth.16,17 Because the nanoparticles can aggregate with each other and with the oligomers, the aggregation often follows the intrinsic step-growth mode, leading to short chain length and the lack of control over branching. Lastly, nanoparticles can be adsorbed onto 1D templates to form chains, but usually it is very difficult to achieve secure anchoring and avoid gaps among the nanoparticles.

With these existing methods, hetero-assembly or “co-polymerization” of nanoparticles is particularly difficult. A few pioneer works have demonstrated the “co-polymerization” of short nanoparticle chains exploiting magnetic dipole18 or electrostatic repulsion.19

Recently, we reported the homo- and co-polymerization of PSPAA-coated nanoparticles into chains.20,21 This new synthetic pathway involves facile colloidal synthesis and generic use of different types of nanoparticles. It affords ultralong chains without branching and allows ready control of their length and width (single-, double-, and triple-line chains). Most importantly, random- and co-polymers of nanoparticles can be synthesized with improved structural control. In this work, we provide video protocols for the related syntheses, intending to give a detailed demonstration and presentation.

Protocol

Let op: Raadpleeg alle relevante veiligheidsinformatiebladen (VIB). Sommige chemische stoffen gebruikt in deze syntheses zijn corrosief, giftig en mogelijk kankerverwekkend. Nanomaterialen kunnen herkende gevaren hebben in vergelijking met hun bulk tegenhangers. Gebruik de juiste veiligheidsprocedures bij het ​​uitvoeren van de reactie, met inbegrip van het gebruik van zuurkast en persoonlijke beschermingsmiddelen (veiligheidsbril, handschoenen, laboratoriumjas, volledige lengte broek, dichte schoenen, etc.). <p class="jove…

Representative Results

Het nanodeeltje monomeren en kettingen worden gekenmerkt door TEM. Figuur 1 toont de representatieve TEM beelden van de PSPAA ingekapselde monomeren, bevestigt de morfologie en grootte (figuur 1). Aangezien sommige monomeren gewoonlijk in het monster na de "polymerisatie" blijft, wordt het monster algemeen gezuiverd en geconcentreerd vóór gebruik voor TEM karakterisatie. Een vlek werd tijdens de bereiding van de TEM door het mengen van de monsteroplossing met 1% ammoniummoly…

Discussion

De mechanistische data van de syntheses worden gerapporteerd en besproken in de voorgaande publicaties. 20,21 Hier gaat het om de beweegredenen van de synthetische condities. Voor de polymerisatie van nanodeeltjes, heeft het de voorkeur dat nanodeeltjes van uniforme grootte worden gebruikt. We volgen literatuurprocedures de uniforme nanodeeltjes Au, Au nanorods 23, 24 en Te nanodraden. 25 Over het algemeen betere maat te uniformiteit kan worden verkregen wanneer de nucleatie en groei fas…

Declarações

The authors have nothing to disclose.

Acknowledgements

The authors thank the NRF (CRP-4-2008-06), A*Star (SERC 112-120-2011) and MOE (RG14/13) Singapore for financial supports.

Materials

Gold(III) chloride trihydrate, ACS reagent, ≥49.0% Au basis
 
Sigma-Aldrich G4022 HAuCl4
Sodium citrate dihydrate, 99% Alfa Aesar A12274
Sodium borohydride, ≥99%
 
Sigma-Aldrich 71321, Fluka
Hexadecyltrimethylammonium bromide,≥98%  Sigma-Aldrich H5882 CTAB
Silver Nitrate, 99.9999% trace metals basis Sigma-Aldrich 204390
L-ascorbic acid,BioXtra, ≥99.0%, crystalline
 
Sigma-Aldrich A5960
Tellurium dioxide,≥99%  Sigma-Aldrich 243450
Hydrazine monohydrate, 64-65 %, reagent grade, 98%  Sigma-Aldrich 207942
Poly(styrene-b-acrylic acid)(PS154-PAA49) Polymer Source P4673A-SAA PS16000-PAA3500
Poly(styrene-b-acrylic acid)(PS144-PAA28) Polymer Source P4002-SAA PS15000-PAA1600
2-Naphthalenethiol,
 ≥99.0% (GC) 
Sigma-Aldrich 88910, Fluka
Sodium dodecyl sulfate, 99% Alfa Aesar A11183
single wall carbon nanotubes, 99%  ultra-pure NanoIntegris PC10344a
Sodium hydroxide Sinopharm S1900136
1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (sodium salt)  Avanti polar lipids 870160P PSH
N,N-dimethylformamide Merck SA4s640012
Ethanol, absolute Fischer E/0650DF/17
Hydrochloric acid, 37% Honey well 10189005 Dilute to 1M before use 

Referências

  1. Anker, J. N. Biosensing with plasmonic nanosensors. Nat Mater. 7, 442-453 (2008).
  2. Maier, S. A. Plasmonics—A Route to Nanoscale Optical Devices. Adv. Mater. 13, 1501-1505 (2001).
  3. Zhu, Z. Manipulation of Collective Optical Activity in One-Dimensional Plasmonic Assembly. ACS Nano. 6, 2326-2332 (2012).
  4. Maier, S. A. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229-232 (2003).
  5. Gong, J., Li, G., Tang, Z. Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today. 7, 564-585 (2012).
  6. Wei, Q. H., Su, K. H., Durant, S., Zhang, X. . Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains. Nano Lett. 4, 1067-1071 (2004).
  7. Warner, M. G., Hutchison, J. E. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nat Mater. 2, 272-277 (2003).
  8. DeVries, G. A. Divalent Metal Nanoparticles. Science. 315, 358-361 (2007).
  9. Kim, B. Y., Shim, I. -. B., Monti, O. L. A., Pyun, J. Magnetic self-assembly of gold nanoparticle chains using dipolar core-shell colloids. Chem. Commun. 47, 890-892 (2011).
  10. Wang, L. B., Xu, L. G., Kuang, H., Xu, C. L., Kotov, N. A. Dynamic Nanoparticle Assemblies. Acc. Chem. Res. 45, 1916-1926 (2012).
  11. Tang, Z., Kotov, N. A. One-Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise. Adv. Mater. 17, 951-962 (2005).
  12. Keng, P. Y., Shim, I., Korth, B. D., Douglas, J. F., Pyun, J. Synthesis and Self-Assembly of Polymer-Coated Ferromagnetic Nanoparticles. ACS Nano. 1, 279-292 (2007).
  13. Shim, M., Guyot-Sionnest, P. Permanent dipole moment and charges in colloidal semiconductor quantum dots. J. Chem. Phys. 111, 6955-6964 (1999).
  14. Nakata, K., Hu, Y., Uzun, O., Bakr, O., Stellacci, F. Chains of Superparamagnetic Nanoparticles. Adv. Mater. 20, 4294-4299 (2008).
  15. Tang, Z., Kotov, N. A., Giersig, M. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science. 297, 237-240 (2002).
  16. Zhang, H., Wang, D. Controlling the Growth of Charged-Nanoparticle Chains through Interparticle Electrostatic Repulsion. Angew. Chem. Int. Ed. 47, 3984-3987 (2008).
  17. Yang, M. Mechanistic investigation into the spontaneous linear assembly of gold nanospheres. Phys. Chem. Chem. Phys. 12, 11850-11860 (2010).
  18. Keng, P. Y. Colloidal Polymerization of Polymer-Coated Ferromagnetic Nanoparticles into Cobalt Oxide Nanowires. ACS Nano. 3, 3143-3157 (2009).
  19. Xia, H., Su, G., Wang, D. Size-Dependent Electrostatic Chain Growth of pH-Sensitive Hairy Nanoparticles. Angew. Chem. Int. Ed. 52, 3726-3730 (2013).
  20. Wang, H. Unconventional Chain-Growth Mode in the Assembly of Colloidal Gold Nanoparticles. Angew. Chem. Int. Ed. 51, 8021-8025 (2012).
  21. Wang, H. Homo- and Co-polymerization of Polysytrene-block-Poly(acrylic acid)-Coated Metal Nanoparticles. ACS Nano. 8, 8063-8073 (2014).
  22. Fred, G. Controlled Nucleation for Regulation of Particle-size in Monodisperse Gold Suspensions. Nature-Phys. Sci. 241, 20-22 (1973).
  23. Gole, A., Murphy, C. J. Azide-Derivatized Gold Nanorods: Functional Materials for “Click” Chemistry. Langmuir. 24, 266-272 (2007).
  24. Lin, Z. -. H., Yang, Z., Chang, H. -. T. Preparation of Fluorescent Tellurium Nanowires at Room Temperature. Cryst. Growth Des. 8, 351-357 (2007).
  25. Xia, Y. N., Xiong, Y. J., Lim, B., Skrabalak, S. E. Shape-Controlled Synthesis of Metal Nanocrystals. Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. 48, 60-103 (2009).
  26. Chen, H. Y. Encapsulation of Single Small Gold Nanoparticles by Diblock Copolymers. ChemPhysChem. 9, 388-392 (2008).
  27. Kang, Y., Taton, T. A. Controlling Shell Thickness in Core−Shell Gold Nanoparticles via Surface-Templated Adsorption of Block Copolymer Surfactants. Macromolecules. 38, 6115-6121 (2005).
  28. Kang, Y., Taton, T. A. Core/Shell Gold Nanoparticles by Self-Assembly and Crosslinking of Micellar. Block-Copolymer Shells. Angew. Chem. Int. Ed. 44, 409-412 (2005).
  29. Chen, Y., Cui, H., Li, L., Tian, Z., Tang, Z. Controlling micro-phase separation in semi-crystalline/amorphous conjugated block copolymers. Polymer Chemistry. 5, 4441-4445 (2014).
  30. Bates, F. S. Polymer-Polymer Phase Behavior. Science. 251, 898-905 (1991).
  31. Zhang, L. F., Shen, H. W., Eisenberg, A. Phase separation behavior and crew-cut micelle formation of polystyrene-b-poly(acrylic acid) copolymers in solutions. Macromolecules. 30, 1001-1011 (1997).
  32. Yu, Y., Zhang, L., Eisenberg, A. Morphogenic Effect of Solvent on Crew-Cut Aggregates of Apmphiphilic Diblock Copolymers. Macromolecules. 31, 1144-1154 (1998).
  33. Liu, C. Toroidal Micelles of Polystyrene-block-Poly(acrylic acid). Small. 7, 2721-2726 (2011).

Play Video

Citar este artigo
Wang, Y., Song, X., Wang, H., Chen, H. Using Polystyrene-block-poly(acrylic acid)-coated Metal Nanoparticles as Monomers for Their Homo- and Co-polymerization. J. Vis. Exp. (101), e52954, doi:10.3791/52954 (2015).

View Video