This paper details the fabrication process of a gate-tunable graphene device, decorated with Coulomb impurities for scanning tunneling microscopy studies. Mapping the spatially dependent electronic structure of graphene in the presence of charged impurities unveils the unique behavior of its relativistic charge carriers in response to a local Coulomb potential.
Grazie alle sue portatori di carica a basso consumo energetico relativistiche, l'interazione tra grafene e le varie impurità porta ad una ricchezza di nuova fisica e gradi di libertà per controllare i dispositivi elettronici. In particolare, il comportamento dei portatori di carica di grafene in risposta a potenziali dalle impurità Coulomb praticati si prevede differire significativamente da quella della maggior parte dei materiali. Microscopia a scansione a effetto tunnel (STM) e la spettroscopia a effetto tunnel (STS) possono fornire informazioni dettagliate sia sulla dipendenza spaziale e l'energia della struttura elettronica di grafene in presenza di un'impurità carica. La progettazione di un dispositivo di impurezza-grafene ibrido, fabbricato con la deposizione controllata di impurità su una superficie di back-gated grafene, ha consentito a diversi nuovi metodi per le proprietà elettroniche controllabile accordatura del grafene. 1-8 elettrostatica gating consente il controllo della densità portatori di carica in grafene e la capacità di Reversisintonizzare bilmente la carica 2 e / o molecolari 5 stati di impurezza. Questo documento delinea il processo di fabbricazione di un dispositivo grafene gate-sintonizzabile decorato con le singole impurezze Coulomb per STM / STS studi combinati. 2-5 Questi studi forniscono preziose informazioni la fisica sottostante, nonché indicazioni per la progettazione di dispositivi di grafene ibridi.
Grafene è un materiale bidimensionale con una struttura unica fascia lineare, che dà luogo alle eccezionali proprietà elettriche, ottiche e meccaniche. 1,9-16 suoi portatori di carica bassa energia sono descritti come relativistici, senza massa fermioni di Dirac 15, la cui comportamento differisce significativamente da quella dei portatori di carica non relativistica nei sistemi tradizionali. 15-18 deposizione controllata di una varietà di impurità su grafene fornisce una piattaforma tuttavia versatile semplice per studi sperimentali della risposta di questi portatori di carica relativistiche ad una gamma di perturbazioni. Le indagini di questi sistemi rivelano che le impurità grafene possono spostare il potenziale chimico 6,7, alterare la effettiva costante dielettrica 8, e potenzialmente portare alla superconduttività mediata elettronicamente 9. Molti di questi studi 6-8 impiegano gating elettrostatica come mezzo per sintonizzare le proprietà del impurit ibridoy-grafene dispositivo. Gating elettrostatica può spostare la struttura elettronica di un materiale rispetto al suo livello di Fermi senza isteresi. 2-5 Inoltre, ruotando la carica 2 o molecolare 5 stati di tali impurità, gating elettrostatiche possono reversibilmente modificare le proprietà di un ibrido impurezza-grafene dispositivo.
Back-gating un dispositivo grafene fornisce un sistema ideale per l'indagine al microscopio a effetto tunnel (STM). Un microscopio a scansione tunnel costituito da una punta metallica tagliente tenuta pochi angstrom distanza da una superficie conduttiva. Applicando una polarizzazione tra la punta e la superficie, elettroni tunnel tra i due. Nel modo più comune, modalità di corrente costante, si può mappare la topografia della superficie del campione da raster scansione la punta in avanti e indietro. Inoltre, la struttura elettronica locale del campione può essere studiato esaminando una conduttanza differenziale dI / dV spettro, che è proporzionale alla de localinsity di stati (ldo). Questa misura viene spesso chiamato spettroscopia a effetto tunnel (STS). Controllando separatamente le tensioni di polarizzazione e back-cancello, la risposta di grafene di impurità può essere studiata analizzando il comportamento di questi spettri dI / dV. 2-5
In questa relazione, la realizzazione di un dispositivo di grafene back-gated decorata con impurità Coulomb (ad esempio, paga atomi Ca) è delineato. Il dispositivo è costituito da elementi nell'ordine seguente (dall'alto verso il basso): adatomo calcio e cluster, grafene, esagonale nitruro di boro (h-BN), diossido di silicio (SiO 2), e silicio bulk (Figura 1). h-BN è una pellicola sottile isolante, che fornisce un substrato atomicamente piatta ed elettricamente omogeneo grafene. 19-21 h-BN e SiO 2 agiscono come dielettrici e bulk Si serve come retro-gate.
Per realizzare il dispositivo, il grafene è dapprima cresciuto su un electrocheappo sita lucido Cu lamina 22,23, che funge da superficie catalitica pulita per la deposizione di vapore chimico (CVD) 22-25 di grafene. In crescita CVD, metano (CH 4) e idrogeno (H 2) gas precursori subiscono pirolisi per formare domini di cristalli di grafene sulla lamina Cu. Questi domini crescono e alla fine si fondono, formando un foglio policristallino grafene. 25 Il grafene risultante viene trasferito sul substrato bersaglio, un SiO 2 chip di h-BN / (preparato da esfoliazione meccanica 19-21 di h-BN su un SiO 2 / Si (100) chip), via poli (metilmetacrilato) (PMMA) trasferimento. 26-28 Nel trasferimento PMMA, il grafene su Cu è il primo spin-rivestito con uno strato di PMMA. Il / grafene / campione Cu PMMA galleggia poi su una soluzione mordenzante (pe, FeCl 3 (aq) 28), che incide via il Cu. Il campione PMMA / grafene non ha reagito viene pescato con un chip h-BN / SiO 2 e successivamentepuliti in un solvente organico (ad esempio, CH 2 Cl 2) e Ar / H 2 ambiente 29,30 per rimuovere lo strato di PMMA. Il campione 2 / Si grafene risultante / h-BN / SiO è poi filo-legato per contatti elettrici di un ultra-alto vuoto (UHV) Piastra campione e ricotto in una camera UHV. Infine, il dispositivo grafene è depositato in situ con impurità Coulomb (ad esempio, carica atomi Ca) e studiato da STM. 2-5
Per caratterizzazione STM, obiettivi critici della fabbricazione del dispositivo grafene includono: 1) crescita monostrato grafene con un numero minimo di difetti, 2) ottenendo un grande, pulito, uniforme, e la superficie grafene continua, 3) l'assemblaggio di un dispositivo di grafene con elevata resistenza tra grafene e la porta (cioè, senza "fuga gate"), e 4) depositando singole impurezze Coulomb.
Il primo obiettivo è governato dal processo CVD, durante il quale g…
The authors have nothing to disclose.
La nostra ricerca è stata sostenuta dal direttore, Office of Science, Ufficio di Scienze energetici di base del Dipartimento dell'Energia degli Stati Uniti Programma sp2 sotto contratto n. DE-AC02-05CH11231 (STM sviluppo di strumentazione e l'integrazione del dispositivo); l'Office of Naval Research (caratterizzazione dei dispositivi), e premio NSF no. CMMI-1235361 (dI / dV di imaging). Dati STM sono stati analizzati e resi utilizzando il software WSxM. 33 DW e AJB sono stati sostenuti dal Dipartimento della Difesa (DoD) attraverso il Programma Nazionale Defense Science & Engineering Graduate Fellowship (NDSEG), 32 CFR 168.
Cu foil | Alfa Aesar | CAS # 7440-50-8 | 99.8% Cu |
Lot # F22X029 | |||
Stock # 13382 | |||
Scotch Magic Tape | Scotch® | N/A | for exfoliation of hBN |
PMMA | Micro Chem | M23004 0500L 1GL | A4 |
FeCl3 resistant spoon | Bel-Art ScienceWare | 367300015 | PTFE coated double ended |
chemical spoon, 15 cm length | |||
FeCl3 (aq) | Ricca Chemical | 3127-16 | 40% w/v |
SiO2/Si(100) Chip | NOVA Electric Materials | HS39626-OX | n/a |
h-BN | K. Watanabe and | Contact the group | hexagonal Japanese BN (JBN) |
T. Taniguchi Group | |||
Au(111) | Agilent Technologies | N9805B-FG | Au(111) epitaxially grown on mica |
Sapphire | Precision Ferrites & Ceramic, Inc. | Contact vendor | P/N Sapphire Chips |
0.22 X 0.125 X 0.015" | |||
Ca source | Trace Sciences International Corp. | AS-3-Ca-5-S | n/a |
Cu(100) | Princeton Scientific | Contact vendor | Cu(100) single crystal |
Methane | Praxair, Inc. | ME 5.0RS-K | Graphene growth precursor gas |
Hydrogen | Praxair, Inc. | HY 6.0RS-K | Graphene growth precursor gas |