Summary

大脑侧向颅骨切开术大脑活动的中尺度广角光学成像

Published: May 07, 2017
doi:

Summary

该协议提出了在小鼠大脑皮质的时间和顶叶区域产生大单方面开颅的方法。这对于实时成像在皮质半球的一个广阔的区域是特别有用的。

Abstract

开颅是一种常用执行程序以暴露脑用于体内实验。在小鼠研究,大多数实验室利用小开颅,一般为3毫米×3毫米。此协议引入用于产生基本上更大7毫米×6mm的颅窗露出最一个大脑半球的在小鼠颞和顶叶皮层的方法( 例如,囟2.5 – 4.5毫米,侧0 – 6毫米)。为了执行该手术,头必须倾斜大约30°,并且许多颞肌的必须缩回。由于大量的骨质去除,这种方法仅用于急性实验在整个手术和麻醉实验动物。

这种创新的大的横向颅窗口的主要优点是提供了皮质的两个内侧和外侧的区域同时访问。这个大单边颅窗口可用于研究细胞之间的神经动力学,以及通过组合多电极电生理记录,神经元活动( 例如,内部或外部成像),和光遗传学刺激的成像作为不同的皮层区之间。此外,这种大开颅手术也暴露出皮层血管大面积的,允许横向皮质血管的直接操作。

Introduction

开颅是使用神经科学家以显示脑的一部分的标准程序。由于电的曙光,开颅手术已经允许在神经科学领域前所未有的突破。与电极大脑皮层的密集映射导致基于这些地图的实验测试假说和理论。我们最近进入其中开颅正用于皮质血流1,2,3和神经血管结构4体内成像,使曝光区5,6,7内皮层活动的实时可视化的新时代。虽然许多研究使用与开颅体内光学成像技术相结合,研究结构和皮层神经元,神经胶质的功能,和COR蒂卡尔脉管系统8, 图9,进一步调查由暴露皮质的小区域限定(但参阅10)。

该协议的目的是提供一种用于产生大的横向开颅,从中线暴露大脑皮层到鳞骨,并且延伸超出前囟和lambda提供的方法。这种大的开颅使得关联皮层的同时观看(脾后,扣,和顶叶),原发性和继发性马达,体感,视觉和听觉皮层。这种方法已经被预先加上电压敏感染料成像(VSDI)调查皮层区域如何多个自发的和刺激诱发的皮质活动5,11,12中彼此交互。此过程中最具挑战性的方面包括定位头动物的,固定所述头板,和避免出血,同时从顶骨分离颞肌。护理也必须在钻井和头骨移除过程作为头骨曲线以倾斜的角度拍摄。

Protocol

下面的协议如下莱斯布里奇动物护理委员会(ACC)的指导方针的大学,并根据加拿大动物保护协会(CCAC)的标准进行的。 1.准备对于长期研究阶段,高压灭菌所有打开的手术用品,并确保不育是保持整个手术。如果需要多次手术,手术之间的反应釜。 确保有充足的缓冲脑的手头上(至少50 mL)中。该溶液是由134 mM氯化钠,5.4 mM的钾,氯化镁1mM的六水合物,…

Representative Results

为了研究在单个半球内皮层区之间的相互作用,我们使用了跨越矢状窦和5延伸出的大的开颅 – 6毫米横向。此颅窗口包括初级(马达,体感,视觉,听觉),仲(电机,视觉)和关联(脾后,扣,顶叶协会)右脑半球( 图3A)的皮层。对于这项工作,我们使用电压敏感染料(VSD)成像,这反映在膜电位3变化。该协议也将是其它?…

Discussion

这对于大颅窗口创新协议使得能够在大脑皮质的时间和顶区同时成像。与光学成像结合,它可以帮助自发的和刺激诱发的活动中来揭示皮层区域内的神经动力学。这种膨胀的开颅手术还公开了一个大的扩展皮质脉管系统的网络,包括大脑中动脉(MCA)的近端,从而使血流和血管外侧缺血性模型的直接操纵的体内成像。这种技术将是伟大的使用表达电压和钙指标蛋白23</…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是由加拿大自然科学和工程研究理事会(NSERC)发现格兰特#40352支持,校园艾伯塔省创新程序委员会主席,阿尔伯塔省老年痴呆症研究计划,以MHM,并NSERC CREATE在BIF博士生奖学金和AIHS研究生奖学金到MK。我们感谢浦明·沃对这个协议的发展和外科培训,并贝·米尔扎·阿加和狄鞘的养殖。

Materials

Heating Pad  FHC 40-90-2
Fine Scissors Fine Science Tools 14058-09
Forceps  Fine Science Tools 11251-35 2 or more pairs are recommended
Spring scissors Fine Science Tools 15000-00, 15000-10 1 pair should be designated for dura removal 
Jet tooth shade powder LANG Dental Jet Tooth Shade Powder to be mixed with the Jet Liquid
Jet tooth shade liquid LANG Dental Jet Tooth Shade Liquid to be mixed wihth the Jet Powder 
Drill Heads – Carbide Burs FG 1/4 389 Midwest Dental 385201
Agarose Powder Sigma-Aldrich A9793
Gelfoam Sinclair Dental Canada Pfizer Gelfoam
Isoflurane Western Drug Distribution Centre Ltd 124125
Lidocaine 2% Epinephrine Western Drug Distribution Centre Ltd 125299
Dexamethazone 5 mg/mL Western Drug Distribution Centre Ltd 125231
Butyl cyanoacrylate glue (VetBond) Western Drug Distribution Centre Ltd 12612

Referências

  1. Sigler, A., Mohajerani, M. H., Murphy, T. H. Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice. Proc Natl Acad Sci U S A. 106 (28), 11759-11764 (2009).
  2. Shih, A. Y., et al. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab. 32 (7), 1277-1309 (2012).
  3. Grinvald, A., Hildesheim, R. VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci. 5 (11), 874-885 (2004).
  4. Blinder, P., Shih, A. Y., Rafie, C., Kleinfeld, D. Topological basis for the robust distribution of blood to rodent neocortex. Proc Natl Acad Sci U S A. 107 (28), 12670-12675 (2010).
  5. Mohajerani, M. H., et al. Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci. 16 (10), 1426-1435 (2013).
  6. Mohajerani, M. H., McVea, D. A., Fingas, M., Murphy, T. H. Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J Neurosci. 30 (10), 3745-3751 (2010).
  7. Lippert, M. T., Takagaki, K., Xu, W., Huang, X., Wu, J. Y. Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio. J Neurophysiol. 98 (1), 502-512 (2007).
  8. Misgeld, T., Kerschensteiner, M. In vivo imaging of the diseased nervous system. Nat Rev Neurosci. 7 (6), 449-463 (2006).
  9. Kerr, J. N., Denk, W. Imaging in vivo: watching the brain in action. Nat Rev Neurosci. 9 (3), 195-205 (2008).
  10. Aronoff, R., et al. Long-range connectivity of mouse primary somatosensory barrel cortex. Eur J Neurosci. 31 (12), 2221-2233 (2010).
  11. McVea, D. A., Mohajerani, M. H., Murphy, T. H. Voltage-sensitive dye imaging reveals dynamic spatiotemporal properties of cortical activity after spontaneous muscle twitches in the newborn rat. J Neurosci. 32 (32), 10982-10994 (2012).
  12. Sweetnam, D., et al. Diabetes impairs cortical plasticity and functional recovery following ischemic stroke. J Neurosci. 32 (15), 5132-5143 (2012).
  13. Yin, Y. Q., et al. In vivo field recordings effectively monitor the mouse cortex and hippocampus under isoflurane anesthesia. Neural Regeneration Research. 11 (12), 1951-1955 (2016).
  14. Sharp, P. S., et al. Comparison of stimulus-evoked cerebral hemodynamics in the awake mouse and under a novel anesthetic regime. Scientific Reports. 5, 12621 (2015).
  15. Kyweriga, M., Mohajerani, M. H., Kianianmomeni, A. Optogenetics: Methods and Protocols. Methods in Molecular Biology. 1408, 251-265 (2016).
  16. Grutzendler, J., Gan, W. B. . Imaging in neuroscience and development : a laboratory manual. , (2005).
  17. Vanni, M. P., Murphy, T. H. Mesoscale transcranial spontaneous activity mapping in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of somatomotor cortex. J Neurosci. 34 (48), 15931-15946 (2014).
  18. Xie, Y., et al. Resolution of High-Frequency Mesoscale Intracortical Maps Using the Genetically Encoded Glutamate Sensor iGluSnFR. J Neurosci. 36 (4), 1261-1272 (2016).
  19. Chan, A. W., Mohajerani, M. H., LeDue, J. M., Wang, Y. T., Murphy, T. H. Mesoscale infraslow spontaneous membrane potential fluctuations recapitulate high-frequency activity cortical motifs. Nat Commun. 6, 7738 (2015).
  20. Lim, D. H., et al. In vivo Large-Scale Cortical Mapping Using Channelrhodopsin-2 Stimulation in Transgenic Mice Reveals Asymmetric and Reciprocal Relationships between Cortical Areas. Front Neural Circuits. 6, (2012).
  21. Ferezou, I., et al. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron. 56 (5), 907-923 (2007).
  22. Mohajerani, M. H., Aminoltejari, K., Murphy, T. H. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci U S A. 108 (22), E183-E191 (2011).
  23. Madisen, L., et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron. 85 (5), 942-958 (2015).
check_url/pt/52642?article_type=t

Play Video

Citar este artigo
Kyweriga, M., Sun, J., Wang, S., Kline, R., Mohajerani, M. H. A Large Lateral Craniotomy Procedure for Mesoscale Wide-field Optical Imaging of Brain Activity. J. Vis. Exp. (123), e52642, doi:10.3791/52642 (2017).

View Video