Due to its multi-day radioactive half-life and favorable decay properties, the positron-emitting radiometal 89Zr is extremely well-suited for use in antibody-based radiopharmaceuticals for PET imaging. In this protocol, the bioconjugation, radiosynthesis, and preclinical application of 89Zr-labeled antibodies will be described.
A excepcional afinidade, especificidade e selectividade dos anticorpos torná-los vectores extraordinariamente atraentes para radiofármacos PET-alvo tumorais. Devido à sua multi-dia meia vida biológica, os anticorpos devem ser marcados com radionuclídeos emissores de positrões com deterioração física relativamente longas semi-vidas. Tradicionalmente, os isótopos emissores de positrões 124-I (t 1/2 = 4,18 d), 86 Y (t 1/2 = 14,7 h), e 64 Cu (t 1/2 = 12,7 h) foram utilizados para marcar os anticorpos de imagens de PET. Mais recentemente, no entanto, o campo tem testemunhado um aumento dramático na utilização do emissor de positrões radiometal 89 Zr em agentes de imagem baseados em anticorpos PET. 89 é um radioisótopo de Zr quase ideal para imagiologia por PET com imunoconjugados, uma vez que possui uma metade física -vida (T 1/2 = 78,4 h), que é compatível com a farmacocinética in vivo de anticorpos e emite um relativamente baixo enopósitrons rgy que produz imagens de alta resolução. Além disso, os anticorpos podem ser directamente marcado com 89 Zr utilizando o quelante de desferrioxamina derivado de sideróforos (DFO). Neste protocolo, o antigénio da membrana alvo J591 anticorpo específico da próstata irá ser usado como um sistema modelo para ilustrar (1) a bioconjugação do quelante bifuncional DFO-isotiocianato de um anticorpo, (2) o radioss�tese e purificação de um 89 ZR DFO-mAb radioimunoconjugado, e (3) a imagem in vivo de PET com 89 um de Zr-DFO-mAb radioimunoconjugado em um modelo murino de cancro.
Devido à sua notável sensibilidade, afinidade e selectividade, os anticorpos têm sido considerados promissores vectores para a entrega de radioisótopos a células cancerosas. No entanto, a sua aplicação em tomografia por emissão de pósitrons (PET) tem sido dificultada pela falta de um radioisótopo emissor de positrões adequado para a sua rotulagem. 1-3 Uma das considerações mais importantes no projeto de radioimunoconjugados está combinando a decadência física meia- vida do radioisótopo para os farmacocinética in vivo do anticorpo. Mais especificamente, os anticorpos têm muitas vezes, de vários dias biológicos meia-vida relativamente longa e, portanto, devem ser rotulados com radioisótopos com meia-vida física comparáveis. Para aplicações de imagem PET, os anticorpos têm sido tradicionalmente radiolabeled com 64 Cu (t 1/2 = 12,7 horas), 86 Y (t 1/2 = 14,7 horas), ou 124 I (t 1/2 = 4,18 d). 4, 5 No entanto, cada um dosesses radioisótopos possui limitações significativas que dificultam a sua adequação para a imagem latente clínica. Enquanto radioimunoconjugados marcados com 86 Y e 64 Cu provaram promissora em investigações pré-clínicas, ambos os isótopos possuem meias-vidas físicas que são demasiado curto para ser eficaz para imagiologia em humanos. 124 I, em contraste, possui uma meia-vida física quase ideal para imagiologia com anticorpos, mas é caro e tem características de degradação que levam à sub-óptimos relativamente baixa resolução de imagens clínicas. Além disso, 124 radioimunoconjugados marcado-I podem estar sujeitos a desalogenação in vivo, um processo que pode diminuir índices de atividade tumoral-a-fundo. 6,7
O esforço para encontrar um radioisótopo emissor de pósitrons para suplantar 64 Cu, 86 Y, e 124 I em radioimunoconjugados tem alimentado a recente onda de pesquisa em 89 anticorpos Zr-marcados. 8-12 Tele razão para o advento de Zr 89 é bastante simples: o metal radioactivo possui propriedades físicas, químicas e quase ideal para o uso em diagnóstico PET radioimunoconjugados 13 89 Zr é produzido através da 89 Y (p, n) 89 Zr reacção num ciclotrão utilizando um. comercialmente disponível e de 100% natural abundante alvo Y 89. 14,15 O metal radioactivo tem um rendimento de 23% de positrões, decai com uma meia-vida de 78,4 horas, e emite positrões com a energia relativamente baixa de 395,5 keV (Figura 1). 13,16,17 É importante notar que 89 Zr também emite uma energia alta, 909 keV γ-raios com 99% de eficiência. Enquanto esta emissão não interfere activamente com as emitidas 511 fótons keV, requer consideração extra no que diz respeito ao transporte, manuseio, e dosimetria. Apesar dessa ressalva, estas características de degradação em última análise, significa que 89 Zr não só tem um h mais favorávelalf-vida para a imagem latente com anticorpos do que 86 Y e 64 Cu, mas também pode produzir imagens de alta resolução de 124 I, que emite pósitrons com energias superiores de 687 e 975 keV, bem como um número de fótons com energias dentro de 100-150 keV de os fotões criado-positrão 511 keV. 13 Além disso, 89 Zr também é mais seguro de manusear, menos caros de produzir, e residualizes nos tumores de forma mais eficaz do que a sua contrapartida com iodo radioactivo. 18,19 Uma limitação potencial de 89 Zr é que ela não possui um isotop�ogo terapêutico, por exemplo, 86 Y (PET) vs. 90 Y (terapia). Isso impede a construção de agentes de imagem quimicamente idênticos, substitutos que podem ser utilizados como batedores de dosimetria para os seus homólogos terapêuticas. Dito isso, as investigações sugerem que 89 anticorpos Zr-rotulados têm potencial como substitutos de imagem para 90 Y- e 177 imunocon Lu-marcados.20,21
De um ponto de vista químico, tal como um metal do Grupo IV, 89 Zr existe como um catião 4 em solução aquosa. Ion O Zr 4+ é altamente carregada, relativamente grande (raio efetivo = 0,84 Å), e pode ser classificado como um cátion "hard". Como tal, ele exibe uma preferência para os ligandos de rolamento até oito doadores de oxigénio, rígidos aniónicos. Facilmente o quelante mais comum usado em 89 radioimunoconjugados Zr-rotulados é desferrioxamine (DFO), um quelante acíclico derivados de siderophore tendo três grupos hidroxamato. O ligando de forma estável coordena o catião Zr 4+ rapidamente e de forma limpa à temperatura ambiente a níveis de pH biologicamente relevantes, e o complexo de Zr-DFO resultante permanece estável ao longo de vários dias em soro fisiológico, soro do sangue, e sangue total. 22 Estudos computacionais sugerem fortemente DFO que forma um complexo com hexacoordinate Zr 4+, em que o centro metálico está coordenado a três neutral e três dadores de oxigénio aniónicos do ligando, bem como dois ligandos de água exógenos (Figura 2). 23,24 O comportamento in vivo dos radioimunoconjugados empregando a conjugação de andaime 89 Zr-DFO tem sido geralmente excelente. No entanto, em alguns casos, a imagiologia e estudos de biodistribuição agudas revelaram níveis elevados de actividade nos ossos dos ratinhos injectados com 89 anticorpos marcados, Zr dados que sugerem que o osteophilic 89 Zr 4+ catião é libertado do quelante in vivo e, subsequentemente, mineraliza no osso. 25 Recentemente, uma série de investigações sobre o desenvolvimento de novos 89 Zr 4+ quelantes particularmente ligandos doadores de oxigénio, com oito têm aparecido na literatura. 24,26,27 No entanto, no presente, o DFO é o quelante mais amplamente empregado em 89 radioimunoconjugados Zr marcado por uma larga margem. Uma variedade de diferentesbioconjugação estratégias têm sido utilizadas para fixar o DFO aos anticorpos, incluindo clique química bioorthogonal, a reacção da tiol-reactivo DFO constrói com cisteínas em que o anticorpo, e a reacção de activado DFO-éster tendo constrói com lisinas do anticorpo. 4,28- 30 facilmente a estratégia mais comum, no entanto, tem sido a utilização de um derivado de isotiocianato de rolamento de DFO, o DFO-NCS (Figura 2). 22 Este quelante bifuncional disponível comercialmente de forma robusta e fiável, forma ligações covalentes estáveis com as lisinas de tioureia da anticorpo (Figura 3).
Ao longo dos últimos anos, uma grande variedade de 89 radioimunoconjugados Zr-DFO-rotulados foram relatados na literatura. Investigações pré-clínicas têm sido especialmente abundante, com anticorpos que vão desde o mais conhecido cetuximab, bevacizumab, e trastuzumab para anticorpos mais esotéricas, como o de segmentação CD105 TRC105 e fPSA-targeting 5A10. 30-36 Mais recentemente, um pequeno número de ensaios clínicos de fase precoce utilizando 89 anticorpos Zr-DFO-rotulados têm surgido na literatura. Ensaios Especificamente, os grupos na Holanda publicaram que empregam 89 Zr-DFO-IACM U36, 89 Zr-DFO-ibritumomab tiuxetan, e 89 Zr-DFO-trastuzumab. 21,32,37 Além disso, uma série de outros estudos clínicos com 89 radioimunoconjugados Zr-marcadas estão em andamento, incluindo as investigações aqui no Memorial Sloan Kettering Cancer Center, usando o PSMA-alvo 89 Zr-DFO-J591 para geração de imagens de câncer de próstata e 89 Zr-DFO-trastuzumab-alvo HER2 para geração de imagens de câncer de mama. 23, 30 Além disso, enquanto que os anticorpos radiomarcados permanecem as mais comuns 89 Zr-radiofármacos marcados, o metal radioactivo tem sido cada vez mais utilizado com outros vectores, incluindo péptidos, proteínas e 38-43 nanomateriais. </sup>
A modularidade deste 89 Zr-DFO metodologia rotulagem é uma enorme vantagem. O repertório de anticorpos de segmentação de biomarcadores é cada vez maior, e o interesse em realizar em imagem PET vivo usando essas construções está crescendo em ritmo acelerado. Como resultado, acreditamos que o desenvolvimento de práticas mais padronizados e protocolos poderia beneficiar o campo. Um excelente protocolo experimental escrito para DFO-NCS conjugação e 89 Zr radiolabeling já foi publicada por Vosjan, et al. 22 Consideramos que a demonstração visual proporcionado por este trabalho poderia ajudar ainda mais os investigadores novos para estas técnicas. No protocolo a mão, o antigénio da membrana alvo J591 anticorpo específico da próstata irá ser usado como um sistema modelo para ilustrar (1) a bioconjugação do quelante bifuncional DFO-isotiocianato de um anticorpo, (2) o radioss�tese e a purificação do 89 Zr-DFO-mAb radioimunoconjugado,e (3) in vivo imagiologia de PET com 89 um de Zr-DFO-mAb radioimunoconjugado em um modelo murino de cancro. 23,44,45
Enquanto a construção, radioimunoconjugados radiolabeling e imagiologia de 89 Zr-DFO-labled geralmente é um procedimento bastante simples, é importante manter algumas considerações-chave em mente durante cada etapa do processo. Por exemplo, talvez a causa mais provável para preocupação durante o passo de conjugação do procedimento é a agregação do anticorpo durante a reacção de conjugação. Este problema é mais frequentemente um produto de mistura pobre da reacção de conjugação após a a…
The authors have nothing to disclose.
Os autores agradecem ao Prof. Thomas Reiner, Dr. Jacob Houghton, e Dr. Serge Lyaschenko para achou conversas.
Name of the Material/Equipment | Company | Catalog Number | Comments |
p-SCN-Bn-DFO | Macrocyclics | B-705 | Store at -80 °C |
[89Zr]Zr-oxalate | Various, including Perkin-Elmer | – | Caution: Radioactive material |
PD-10 Desalting Columns | GE Healthcare | 17-0851-01 | Store at room temperature |
Amicon Ultra-4 Centrifugal Filter Units | EMD Millipore | UFC805024 | Store at room temperature |
Silica Gel Impregnanted RadioTLC Paper | Agilent Technologies | SGI0001 | Cut into strips 0.5 cm wide |