Summary

청각 통로의 Optogenetic 자극에 대한 쥐의 등쪽 달팽이 핵의 직접 시각화

Published: January 20, 2015
doi:

Summary

The goal of this protocol is to outline a surgical approach to provide direct access to the dorsal cochlear nucleus in a murine model.

Abstract

체포 또는 청력 손실을 반대하는 바이러스 매개 유전자 전달의 사용에 대한 조사는 크게 말초 청각 시스템에 이관되었다. 연구는 거의 중앙 청각 시스템에 유전자 전달을 조사 하였다. 청각 경로의 2 차 뉴런을 포함 뇌간의 등쪽 달팽이관 핵 (DCN)를, 유전자 전달을위한 잠재적 인 위치이다. 이 프로토콜에서 후두와 접근법을 통해 쥐의 DCN의 직접적이고 최대 노출에 대한 기술은 증명된다. 이 방법은 하나 급성 또는 생존 수술을 할 수 있습니다. DCN의 직접적인 시각화에 이어, 실험 호스트는 청색 레이저에 연결된 광 파이버에 의한 인공 핵 및 후속 자극으로 opsins의 주입을 포함 할 수있다. 이러한 전기 자극과 신경 인젝터 트레이싱과 같은 다른 신경 생리학 실험도 가능하다. visualiza의 수준기 및 자극 지속 기간은 달성 실험 광범위한 적용이 접근법 만든다.

Introduction

Virus-mediated gene transfer to reverse hearing loss has largely been focused on the peripheral auditory system.1 Targeting the cochlea, investigators have examined a host of delivery routes, including osmotic minipump infusion2, vector-transgene complex-soaked Gelfoam®2 or gelatin sponge3, direct microinjection4; numerous gene transfer vectors, including adeno-associated viral vectors5,6, lentiviral vectors7, and cationic liposomes2; and the dissemination of gene transfer vectors beyond the target tissue2. Most recently, adeno-associated virus (AAV)-1 has been introduced in the cochlea in order to treat deafness in mice due to loss of vesicular glutamate transporter-3.8 Further, the application of optogenetics in peripheral auditory system has recently been described.9

Few studies, however, have examined gene transfer to the central auditory system. The dorsal cochlear nucleus (DCN) of the brainstem contain second order neurons of the auditory pathway. While gene transfer techniques in the cochlear nucleus (CN) may be utilized for a host of investigations, gene transfer of opsins, light-sensitive proteins, to the DCN may also be utilized to enable optogenetics-based experimental techniques. Following virus-mediated gene transfer delivery of an opsin, such as channelrhodopsin-2 (ChR2), the neurons of the DCN becomes sensitive to light stimuli. Optogenetic gene transfer has been previously attempted in several brainstem regions, including the rat retrotrapezoid nucleus, mouse locus coeruleus, monkey superior colliculus, and mouse ventral tegmental area.10-14

Recently, investigators have examined the use of optogenetics in the DCN.15,16 The DCN is the location of placement of auditory brainstem implants in humans, making it an attractive part of the auditory system to study for translational studies on auditory neuroprostheses. However, given the location of the DCN, surgical exposure is challenging. The technique described herein provides a protocol for maximal exposure of the DCN via posterior fossa approach to enable viral vector gene transfer and optogenetics-based experiments in a murine model. Previous studies used stereotactic microinjection into the DCN with channelrhodopsin-2.16 Stereotaxic injections, however, are potentially less accurate than injections made by direct visualization, especially in a nucleus as small and deep along the brainstem as the DCN. Transgenic mice expressing tissue specific proteins in the CN are also an attractive option and would obviate the need for gene transfer. Our protocol for exposure of the DCN would also work in transgenic mice as the DCN would need to be directly exposed for optical stimulation. This technique for surgical exposure of the DCN is adapted from previous protocols involving recordings from the auditory nerve and cochlear nucleus in mice and rat models.15,17-20

The overall goal of the protocol is to provide direct exposure to the CN to allow for gene transfer techniques. More specifically, the approach is compatible with both acute and survival surgery and the preparation can be repeated in the same animal for subsequent neurophysiological testing. The direct exposure of the DCN protocol has implications for optogenetics- and virus-mediated gene transfer-based experimentation in other nuclei of the brainstem.

Protocol

참고 : 모든 실험 절차는 보건 서비스 동물 애호 관리에 대한 정책 및 실험 동물의 사용을 포함하여 국가 동물 관리 지침을 따르 매사추세츠 눈의 동물 관리 및 사용위원회와 귀 의무실과 하버드 의과 대학,에 따라 수행된다 ILAR 가이드 및 동물 복지 법. 실험 절차는 왼쪽 DCN의 세부 노출 아래에 나열된. 생존 수술을 수행하는 동안 멸균 악기를 사용합니다. 1 차 개두술 등쪽 달팽이 핵 노출 <…

Representative Results

부분 소뇌 흡입은 코 클리어 핵에 대한 액세스를 보여줍니다 두개골을 덮는 피부와 근육이 같은 관상과 람다 봉합 선으로, 두개골 표면 랜드 마크를 제거한 후, 개두술의 대략적인 현지화를 보여줍니다. rongeurs와 개두술에 따라, 소뇌가 보여집니다. 소뇌의 작은 부분을주의 깊게 흡입 후 주입 할 수있는 CN, (그림 1)의 시각화를 보여줍니다. <p class="jove_con…

Discussion

이 논문은 중앙 청각 시스템의 조작 생쥐 모델에서 DCN의 직접 시각화 기술을 설명합니다. 직접 시각화의 설명 방식은 정위 적 방법을 주요 대안에 비해 상당한 장점을 제공합니다. 정위 방법은 직접 시각화 여유가없는 반면, 주로, DCN의 직접 시각화, 뇌간의 사이트를 즉시 확인 할 수 있습니다. 바이러스 – 매개 유전자 전달의 경우에서와 같이, 인큐베이션 기간을 필요로 장기간 실험에서, 주입 대?…

Declarações

The authors have nothing to disclose.

Acknowledgements

자금 조달 :이 작품은 재단 Bertarelli 보조금 (DJL), MED-EL 부여 (DJL), 보건 보조금 DC01089의 국립 연구소 (MCB)에 의해 지원되었다.

Materials

Name of the Material / Equipment Company Catalog Number
Stereotaxic holder Stoelting 51500
Homeothermic blanket Harvard 507214
Scalpel blade #11 Fine Surgical Tools 10011-00
Iris scissor Fine Surgical Tools 14084-08
5 French suction Symmetry Surgical 2777914
Dental Points Henry Schein 100-8170
Bone rongeur Fine Surgical Tools 16020-14
10 µl Hamilton syringe Hamilton  7633-01
34 gauge, needle Hamilton  207434
Rongeurs Fine Surgical Tools 16021-14

Referências

  1. Lalwani, A., Mhatre, A. Cochlear gene therapy. Ear Hear. 24 (4), 342-348 (2003).
  2. Lalwani, A., Jero, J., Mhatre, A. Current issues in cochlear gene transfer. Audiol Neurootol. 7 (3), 146-151 (2002).
  3. Jero, J., et al. Cochlear gene delivery through an intact round window membrane in mouse. Hum Gene Ther. 12 (5), 539-548 (2001).
  4. Koh, S., Pettis, R., Mhatre, A., Lalwani, A. Cochlear microinjection and its effects upon auditory function in the guinea pig. Eur Arch Otorhinolaryngol. 257 (9), 469-472 (2000).
  5. Lalwani, A., Walsh, B., Reilly, P., Muzyczka, N., Mhatre, A. Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated virus into the cochlea of the guinea pig. Gene Ther. 3 (7), 588-592 (1996).
  6. Wareing, M., Lalwani, A. Cochlear gene therapy: current perspectives. Int J Pediatr Otorhinolaryngol. 5 (49), 27-30 (1999).
  7. Han, J., et al. Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector. Hum Gene Ther. 10 (11), 1867-1873 (1999).
  8. Akil, O., et al. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron. 75 (2), 283-293 (2012).
  9. Hernandez, V. H., et al. Optogenetic stimulation of the auditory pathway. J Clin Invest. 124 (3), 1114-1129 (2014).
  10. Adamantidis, A., et al. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci. 30 (31), 10829-10835 (2011).
  11. Kim, K., et al. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PloS One. 7 (4), e33612 (2012).
  12. Britt, J., Bonci, A. Optogenetic interrogations of the neural circuits underlying addiction. Curr Opin Neurobiol. 23 (4), 539-545 (2013).
  13. Abbott, S., Coates, M., Stornetta, R., Guyenet, P. Optogenetic stimulation of c1 and retrotrapezoid nucleus neurons causes sleep state-dependent cardiorespiratory stimulation and arousal in rats. Hypertension. 61 (4), 835-841 (2013).
  14. Carter, M., et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 13 (12), 1526-1533 (2010).
  15. Darrow, K., et al. Optogenetic control of central auditory neurons. Assoc. Res. Otolaryngol. Abstr. (695), (2012).
  16. Shimano, T., et al. Assessment of the AAV-mediated expression of channelrhodopsin-2 and halorhodopsin in brainstem neurons mediating auditory signaling. Brain Res. 1511, 138-152 (2013).
  17. Doucet, J., Ryugo, D. Projections from the ventral cochlear nucleus to the dorsal cochlear nucleus in rats. J Comp Neurol. 385, 245-264 (1997).
  18. Brown, M., Drottar, M., Benson, T., Darrow, K. Commissural axons of the mouse cochlear nucleus. J Comp Neurol. 521, 1683-1696 (2013).
  19. Verma, R., et al. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus. Hear Res. 310, 69-75 (2014).
  20. Taberner, A. M., Liberman, M. C. Response properties of single auditory nerve fibers in the mouse. J Neurophysiol. 93 (1), 557-569 (2005).
  21. Rolls, A., et al. Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Natl Acad Sci. 108 (32), 13305-13310 (2011).
  22. Huff, M., Miller, R., Deisseroth, K., Moorman, D., LaLumiere, R. Posttraining optogenetic manipulations of basolateral amygdala activity modulate consolidation of inhibitory avoidance memory in rats. Proc Natl Acad Sci. 110 (9), 3597-3602 (2013).
  23. Stortkuhl, K., Fiala, A. The Smell of Blue Light: A New Approach toward Understanding an Olfactory Neuronal Network. Front Neurosci. 5 (72), (2011).
  24. Hira, R., et al. Transcranial optogenetic stimulation for functional mapping of the motor cortex. J Neurosci Methods. 179 (2), 258-263 (2009).
  25. Ayling, O., Harrison, T., Boyd, J., Foroshkov, A., Murphy, T. Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat Methods. 6 (3), 219-224 (2009).
  26. Boyden, E., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263-1268 (2005).
check_url/pt/52426?article_type=t

Play Video

Citar este artigo
Kozin, E. D., Darrow, K. N., Hight, A. E., Lehmann, A. E., Kaplan, A. B., Brown, M. C., Lee, D. J. Direct Visualization of the Murine Dorsal Cochlear Nucleus for Optogenetic Stimulation of the Auditory Pathway. J. Vis. Exp. (95), e52426, doi:10.3791/52426 (2015).

View Video