Summary

パッチクランプ技術を用いたダーク適応、マウス網膜スライス標本におけるニューロンにおける記録光誘発シナプス後応答

Published: February 11, 2015
doi:

Summary

We will demonstrate how to prepare retinal slices from the mouse eye and record light responses in retinal neurons. The entire procedure is conducted in dark-adapted conditions.

Abstract

網膜は視覚系へのゲートウェイである。視覚信号処理メカニズムを理解するために、網膜の神経回路網の機能を調査する。ネットワーク内の網膜神経細胞は、多数のサブタイプが含まれる。双極細胞、神経節細胞、およびアマクリン細胞の10以上のサブタイプは、形態学的研究によって確認されている。網膜ニューロンの複数のサブタイプは、そのような動きや色などの視覚的シグナルの明確な特徴をコードする、複数の神経経路を形成すると考えられる。しかし、視覚的な信号処理における各ニューロンの機能的役割は十分に理解されていない。パッチクランプ法は、この根本的な問題に対処するのに便利です。ここでは、暗順応状態でパッチクランプ記録を用いて、マウスの網膜神経細胞の光誘発性シナプス応答を記録するためのプロトコルが提供される。マウスの眼には、O / N暗順応であり、網膜スライス標本は、赤外線照明と視聴者を使用して、暗い部屋で解剖されている。赤外光にはありませんマウスの光受容体を活性化し、したがって、それらの光反応性を保持します。パッチクランプは、網膜神経細胞の光誘発性の応答を記録するために使用される。蛍光色素は、ニューロンの形態学的サブタイプを特徴付けるための録音中に注入される。この手順では、マウスの網膜に各ニューロンの生理的機能を決定することが可能になります。

Introduction

The retina is one of the unique parts of the nervous system. As an accessible part of the brain, its synaptic architecture has been well characterized. In addition, the functions of this neural network can be examined with a physiological stimulus: light. If the retinal tissue is isolated in a dark room with appropriate procedures, neurons in the tissue will respond to light. This preparation has been used to study visual signal processing and elucidate various synaptic mechanisms and neural network functions, as well as disease mechanisms.

Light responses in retinal neurons have been recorded for decades. Early studies used sharp electrodes to make intracellular recordings from mudpuppy retinal neurons1. In the 1980s, the patch clamp technique was invented2, and soon became a popular method among vision researchers3,4. Single cell recordings from lower vertebrates, including mudpuppy and fish retinal neurons, were popular methods that contributed to the elucidation of visual signal processing mechanisms5,6.

After genetic mutation techniques were developed, the mouse retina became a more popular model for vision researchers7-9. The mammalian retina is more attractive than that of lower vertebrates because it is evolutionarily closer to the human retina, and there is an opportunity to use disease models. However, mouse retinal cells are small and fragile10, and making retinal preparations and conducting patch clamp recordings in a dark room is challenging. As technology has improved, diverse approaches have become available to study visual signaling mechanisms such as imaging studies11 and the electroretinogram (ERG)12. Nevertheless, single cell recording with the patch clamp method is still important because it is highly temporally and spatially sensitive compared to other methods. Therefore, we have continuously conducted patch clamp recordings and improved our methods to investigate visual signal processing in mouse retinal slice preparations13-15.

In this video tutorial, the protocols are presented with important tips. Good recordings can only be achieved with good preparation. Practicing animal dissection and building a sturdy patch clamp rig will enable most researchers to achieve successful recordings.

Protocol

倫理声明:動物を対象とする手順は、ウェイン州立大学の施設内動物管理使用委員会(IACUC)によって承認された。 実験ソリューションの調製実際の実験の前に1週間に解剖ソリューション1日を準備します。なぜなら、より低い温度16でのその強力な緩衝能の網膜解剖のためのHEPES緩衝液を使用してください。 115のNaCl、2.5のKCl、2.5のCaCl 2、1.0のMgCl …

Representative Results

代表的なスライス標本は、スライス標本が平坦面に神経節細胞の光受容体を示す、真っ直ぐな位置にある。 図1に示されず、濾紙からの剥離される。スライスが傾いている場合、製剤の唯一の部分は、それが困難なパッチクランプのための適切な細胞を同定することを可能にする焦点である。記録のために、それは通常、光沢のある表面を有して良い相馬、さえ丸い形状、目に見…

Discussion

Good recordings can only be achieved with good retinal preparations and well-designed patch clamp setups. Although all the steps described above are important, the discussion highlights some critical steps both for the dissection and recordings.

For dissection, two things are especially important: cooling and oxygenation. After enucleating the eye, quickly remove the front part of the eye in a dissecting chamber with oxygen-bubbled, cooled dissecting solution, and pour cold solution into the …

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH R01 EY020533, WSU Startup Fund, and RPB grants.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
mice (28-60 days old, male) Jackson laboratory C57BL/6J strain
Ames' medium powder Sigma A1420 excellent
Stereo microscope Nikon SMZ745 excellent
dissecting tool_forceps Dumont #4, #5, #55 excellent
dissecting tool_scissors Roboz RS-5605 excellent
dissecting tool_surgery knife Surgistar 7514 excellent
razor blade (for chopper) EMS 71970 excellent
chopper handmade
infrared viewer Night Owl Optics NOBG1 It shows bright view.  Focusing small objects is an issue.
infrared pocket scopes B.E. Meyers OWL Gen 3 NV pocketscope excellent view
puller Sutter P-1000 excellent.  Make consistent size pipettes.
dark box Pelican dark box excellent
patch clamp system Scientifica slice scope 2000 Excellent setup.  Most key components are included in one package.  Micromanipulators are excellent.
amplifier Molecular Devices multiclamp 700B Excellent and easy control.
acquiring software Molecular Devices pClamp software Excellent and easy control.
light source (LED) Cool LED pE-2 4 channel system Excellent
CCD camera Q-imaging Retiga 2000 Excellent
Faraday cage handmade

Referências

  1. Werblin, F. S., Dowling, J. E. Organization of the retina of the mudpuppy, Necturus maculosus II. Intracellular recording. J Neurophysiol. 32 (3), 339-355 (1969).
  2. Sakmann, B., Neher, E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol. 46, 455-472 (1984).
  3. Lukasiewicz, P., Werblin, F. A slowly inactivating potassium current truncates spike activity in ganglion cells of the tiger salamander retina. J Neurosci. 8 (12), 4470-4481 (1988).
  4. Kaneko, A., Tachibana, M. Effects of L-glutamate on the anomalous rectifier potassium current in horizontal cells of Carassius auratus retina. J Physiol. 358, 169-182 (1985).
  5. Kamermans, M., Werblin, F. GABA-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina. J Neurosci. 12 (7), 2451-2463 (1992).
  6. Cook, P. B., McReynolds, J. S. Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nat Neurosci. 1 (8), 714-719 (1998).
  7. Pang, J. J., Gao, F., Wu , J. S. Light-evoked current responses in rod bipolar cells, cone depolarizing bipolar cells and AII amacrine cells in dark-adapted mouse retina. J Physiol. 558 (Pt. 558 (Pt 3), 897-912 (2004).
  8. Euler, T., Masland , R. H. Light-evoked responses of bipolar cells in a mammalian retina). J Neurophysiol. 83 (4), 1817-1829 (2000).
  9. Berntson, A., Taylor , W. R. Response characteristics and receptive field widths of on-bipolar cells in the mouse retina. J Physiol. 524 Pt. 524 (Pt 3), 879-889 (2000).
  10. Sterling, P., Smith, R. G. Design for a binary synapse. Neuron. 41 (3), 313-315 (2004).
  11. Borghuis, B. G., Marvin, J. S., Looger, L. L., Demb, J. B. Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J Neurosci. 33 (27), 10972-10985 (2013).
  12. Dowling, J. E., Sidman, R. L. Inherited retinal dystrophy in the rat. J Cell Biol. 14, 73-109 (1962).
  13. Eggers, E. D., Lukasiewicz, P. D. GABA(A), GABA(C) and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells. J Physiol. 572 (Pt 1), 215-225 (2006).
  14. Ichinose, T., Lukasiewicz, P. D. The mode of retinal presynaptic inhibition switches with light intensity). J Neurosci. 32 (13), 4360-4371 (2012).
  15. Ichinose, T., Fyk-Kolodziej, B., Cohn, J. Roles of ON cone bipolar cell subtypes in temporal coding in the mouse retina. J Neurosci. 34 (26), 8761-8771 (2014).
  16. Baicu, S. C., Taylor, M. J. Acid-base buffering in organ preservation solutions as a function of temperature: new parameters for comparing buffer capacity and efficiency. Cryobiology. 45 (1), 33-48 (2002).
  17. Ames, A., Nesbett, F. B. In vitro retina as an experimental model of the central nervous system. J Neurochem. 37 (4), 867-877 (1981).
  18. Haverkamp, S., et al. The primordial, blue-cone color system of the mouse retina. J Neurosci. 25 (22), 5438-5445 (2005).
  19. Wei, W., Elstrott, J., Feller, M. B. Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina. Nat Protoc. 5 (7), 1347-1352 (2010).
  20. Farre, C. G., M Bruggemann, A., Fertig, N. Ion channel screening – automated patch clamp on the rise. Drug discovery today. Technologies. 5 (1), e1-e34 (2008).

Play Video

Citar este artigo
Hellmer, C. B., Ichinose, T. Recording Light-evoked Postsynaptic Responses in Neurons in Dark-adapted, Mouse Retinal Slice Preparations Using Patch Clamp Techniques. J. Vis. Exp. (96), e52422, doi:10.3791/52422 (2015).

View Video