We will demonstrate how to prepare retinal slices from the mouse eye and record light responses in retinal neurons. The entire procedure is conducted in dark-adapted conditions.
網膜は視覚系へのゲートウェイである。視覚信号処理メカニズムを理解するために、網膜の神経回路網の機能を調査する。ネットワーク内の網膜神経細胞は、多数のサブタイプが含まれる。双極細胞、神経節細胞、およびアマクリン細胞の10以上のサブタイプは、形態学的研究によって確認されている。網膜ニューロンの複数のサブタイプは、そのような動きや色などの視覚的シグナルの明確な特徴をコードする、複数の神経経路を形成すると考えられる。しかし、視覚的な信号処理における各ニューロンの機能的役割は十分に理解されていない。パッチクランプ法は、この根本的な問題に対処するのに便利です。ここでは、暗順応状態でパッチクランプ記録を用いて、マウスの網膜神経細胞の光誘発性シナプス応答を記録するためのプロトコルが提供される。マウスの眼には、O / N暗順応であり、網膜スライス標本は、赤外線照明と視聴者を使用して、暗い部屋で解剖されている。赤外光にはありませんマウスの光受容体を活性化し、したがって、それらの光反応性を保持します。パッチクランプは、網膜神経細胞の光誘発性の応答を記録するために使用される。蛍光色素は、ニューロンの形態学的サブタイプを特徴付けるための録音中に注入される。この手順では、マウスの網膜に各ニューロンの生理的機能を決定することが可能になります。
The retina is one of the unique parts of the nervous system. As an accessible part of the brain, its synaptic architecture has been well characterized. In addition, the functions of this neural network can be examined with a physiological stimulus: light. If the retinal tissue is isolated in a dark room with appropriate procedures, neurons in the tissue will respond to light. This preparation has been used to study visual signal processing and elucidate various synaptic mechanisms and neural network functions, as well as disease mechanisms.
Light responses in retinal neurons have been recorded for decades. Early studies used sharp electrodes to make intracellular recordings from mudpuppy retinal neurons1. In the 1980s, the patch clamp technique was invented2, and soon became a popular method among vision researchers3,4. Single cell recordings from lower vertebrates, including mudpuppy and fish retinal neurons, were popular methods that contributed to the elucidation of visual signal processing mechanisms5,6.
After genetic mutation techniques were developed, the mouse retina became a more popular model for vision researchers7-9. The mammalian retina is more attractive than that of lower vertebrates because it is evolutionarily closer to the human retina, and there is an opportunity to use disease models. However, mouse retinal cells are small and fragile10, and making retinal preparations and conducting patch clamp recordings in a dark room is challenging. As technology has improved, diverse approaches have become available to study visual signaling mechanisms such as imaging studies11 and the electroretinogram (ERG)12. Nevertheless, single cell recording with the patch clamp method is still important because it is highly temporally and spatially sensitive compared to other methods. Therefore, we have continuously conducted patch clamp recordings and improved our methods to investigate visual signal processing in mouse retinal slice preparations13-15.
In this video tutorial, the protocols are presented with important tips. Good recordings can only be achieved with good preparation. Practicing animal dissection and building a sturdy patch clamp rig will enable most researchers to achieve successful recordings.
Good recordings can only be achieved with good retinal preparations and well-designed patch clamp setups. Although all the steps described above are important, the discussion highlights some critical steps both for the dissection and recordings.
For dissection, two things are especially important: cooling and oxygenation. After enucleating the eye, quickly remove the front part of the eye in a dissecting chamber with oxygen-bubbled, cooled dissecting solution, and pour cold solution into the …
The authors have nothing to disclose.
This work was supported by NIH R01 EY020533, WSU Startup Fund, and RPB grants.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
mice (28-60 days old, male) | Jackson laboratory | C57BL/6J strain | |
Ames' medium powder | Sigma | A1420 | excellent |
Stereo microscope | Nikon | SMZ745 | excellent |
dissecting tool_forceps | Dumont | #4, #5, #55 | excellent |
dissecting tool_scissors | Roboz | RS-5605 | excellent |
dissecting tool_surgery knife | Surgistar | 7514 | excellent |
razor blade (for chopper) | EMS | 71970 | excellent |
chopper | handmade | ||
infrared viewer | Night Owl Optics | NOBG1 | It shows bright view. Focusing small objects is an issue. |
infrared pocket scopes | B.E. Meyers | OWL Gen 3 NV pocketscope | excellent view |
puller | Sutter | P-1000 | excellent. Make consistent size pipettes. |
dark box | Pelican | dark box | excellent |
patch clamp system | Scientifica | slice scope 2000 | Excellent setup. Most key components are included in one package. Micromanipulators are excellent. |
amplifier | Molecular Devices | multiclamp 700B | Excellent and easy control. |
acquiring software | Molecular Devices | pClamp software | Excellent and easy control. |
light source (LED) | Cool LED | pE-2 4 channel system | Excellent |
CCD camera | Q-imaging | Retiga 2000 | Excellent |
Faraday cage | handmade |