A method of fabricating, in ambient conditions, organic photovoltaic tandem devices in a parallel configuration is presented. These devices feature an air-processed, semi-transparent, carbon nanotube common cathode.
A method of fabricating organic photovoltaic (OPV) tandems that requires no vacuum processing is presented. These devices are comprised of two solution-processed polymeric cells connected in parallel by a transparent carbon nanotubes (CNT) interlayer. This structure includes improvements in fabrication techniques for tandem OPV devices. First the need for ambient-processed cathodes is considered. The CNT anode in the tandem device is tuned via ionic gating to become a common cathode. Ionic gating employs electric double layer charging to lower the work function of the CNT electrode. Secondly, the difficulty of sequentially stacking tandem layers by solution-processing is addressed. The devices are fabricated via solution and dry-lamination in ambient conditions with parallel processing steps. The method of fabricating the individual polymeric cells, the steps needed to laminate them together with a common CNT cathode, and then provide some representative results are described. These results demonstrate ionic gating of the CNT electrode to create a common cathode and addition of current and efficiency as a result of the lamination procedure.
고분자 반도체 인해 온도에 민감한 기판 높은 흡수율, 좋은 전송 특성, 유연성, 호환성에 대한 최고의 유기 태양 전지 (OPV) 물질이다. OPV 장치 전력 변환 효율, η, 그들 점점 가능한 에너지 기술 제작 한 9.1 %만큼 높은 효율 단일 세포로, 지난 몇 년간 상당히 더니.
η의 개선에도 불구하고, 소자의 박막 최적 활성층 두께는 광 흡수를 제한하고 안정적인 제조를 방해. 또한, 각 고분자의 광 흡수의 스펙트럼 폭은 무기 재료에 비해 제한됩니다. 분광 감도가 다른 페어링 폴리머는 탠덤 아키텍처이 필요한 혁신을하고, 이러한 어려움을 무시합니다.
시리즈 탠덤 장치는 가장 일반적인 탠덤 구조이다. 이러한 설계에서, 전자 수송 materi문헌 선택적 금속 재결합 층 및 정공 수송층은 서브 셀이라는 두 개의 독립적 광활성 층을 연결한다. 직렬 구조의 서브 셀을 연결하는 결합 장치의 개방 회로 전압을 증가시킨다. 일부 그룹은 축퇴 도핑 전송 층 (3) 성공 있었다 – 5 만 이상의 그룹은 층간 6,7 전자와 정공의 재결합을 돕기 위해 금색 또는 은색의 입자를 사용했다.
대조적으로, 병렬 텐덤 두 활성층 합류 높은 전도성 전극, 양극 또는 음극 중 하나를 요구한다. 층간 금속 입자를 함유하는 일련의 탠덤 중간층을 제한,보다 얇기 때문에, 연속적인 금속 전극으로 이루어지는 병렬 탠덤 중간층 용 이는 매우 투명해야한다. 탄소 나노 튜브 (CNT) 시트 금속층보다 더 높은 투명도를 나타낸다. 나노 기술 연구소 그래서, 시마네 대학과 공동으로, INT가모 놀리 식, 병렬 직렬 장치 8 층간 전극으로서 사용하는 개념을 roduced.
이전 노력은 층간 양극 8,9 역할을 탄소 나노 튜브 시트와 모 놀리 식, 병렬, 직렬 OPV 장치를 선보였습니다. 이러한 방법은 나중에 층을 증착 할 때 하나 또는 두 세포 손상 앞 층의 단락을 방지하기 위해 특별한주의가 필요합니다. 이 논문에 기재된 신규 방법은 두 개의 단일 세포의 중합체 활성층 위에 CNT 전극을 배치하여 제작을 용이하게,도 1에 도시 된 바와 같이 다음 함께 두 개의 장치를 적층.이 방법은 공기를 포함한 장치로서 현저 – 안정된 CNT 음극이, 건조한 및 솔루션 처리를 사용하는 주변 조건에서 완전히 제조 할 수있다.
그들이 광활성 영역으로부터 전자를 수집하기 위해 일 함수를 감소의 n- 형 도핑을 필요로 CNT 시트는, 본질적으로 잘 음극 아니다태양 전지 (10). 14 – 전해질 대전 전기 이중층은, 이러한 이온 성 액체로서, CNT의 일 함수가 전극 (11)을 이동하는데 사용될 수있다.
게이트 전압 (V 게이트) 증가 인도 2의 선행 논문 (15)에 설명되고 도시 된 바와 같이, CNT 공통 전극의 일 함수가 전극의 비대칭을 생성, 감소된다. 이 OPV의 수용체로부터 전자를 수집 찬성 OPV의 기증자 구멍 수집을 방지하고, 디바이스는 포토 다이오드 (15)의 동작에 비효율적 포토 레지스터에서 변경, 전원을 켭니다. 또한 에너지는 태양 전지 (15)에 의해 생성 된 전력에 비해 사소한되는 장치 및 게이트 누설 전류로 인해 손실 된 전력을 충전하는 데 사용되는 것을 주목해야한다. CNT 전극의 이온 게이팅 인한 상태의 낮은 밀도로 높은 일 함수에 큰 영향을 미친다탄소 나노 튜브 전극의 부피 비율로 표면 영역입니다. 비슷한 방법이 N-Si를 16 CNT의 계면에서 쇼트 키 장벽을 향상시키기 위해 사용되어왔다.
병렬 직렬 태양 전지를 설계 할 때의 결과는 몇 가지 고려를 강조. 서브 셀 중 하나가 저조한 경우 특히, 탠덤 성능에 부정적인 영향. 결과는 두 가지 주요 효과가 있음을 보여준다. 하나의 서브 셀이 단락 된 경우, 예를 들어, 저항 행동을 보여, FF T는 나쁜 하위 셀의 FF보다 높을 수 없습니다. J T의 SC와 V T의 OC는 유사하게 영향을받습니다. V 게이?…
The authors have nothing to disclose.
Support for this work was provided by DOE STTR grant DE-SC0003664 on Parallel Tandem Organic Solar Cells with Carbon Nanotube Sheet Interlayers and Welch Foundation grant AT-1617. The authors thank J. Bykova for providing CNT forests and A. R. Howard, K. Meilczarek, and J. Velten for technical assistance and useful discussions.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) | Heraeus | Clevios PVP AI 4083 | |
poly(3- hexylthiophene-2,5-diyl) | Rieke Metals Inc. | P3HT: P200 | |
phenyl-C61 -butyric acid methyl ester | 1- Material | PC61BM | |
Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) | 1- Material | PTB7 | |
phenyl-C61 -butyric acid methyl ester | Solenne | PC71BM | |
1,8-Diiodooctane | Sigma Aldrich | 250295 | |
Chlorobenzene | Sigma Aldrich | 284513 | |
Indium Tin Oxide Coated Glass 15 Ohm/SQ | Lumtec | ||
S1813 | UTD Cleanroom | ||
MF311 | UTD Cleanroom | ||
HCl | UTD Cleanroom | ||
Acetone | Fisher Scientific | A18-20 | |
Toluene | Fisher Scientific | T323-20 | |
Methanol | BDH | BDH1135-19L | |
Isopropanol | Fisher Scientific | A416-20 | |
CEE Spincoater | Brewer Scientific | http://www.utdallas.edu/research/cleanroom/tools/CEESpinCoater.htm | |
Contact Printer | Quintel | Q4000-6 | http://www.utdallas.edu/research/cleanroom/QuintelPrinter.htm |
CPK Spin Processor | http://www.utdallas.edu/research/cleanroom/tools/CPKsolvent.htm | ||
Spin Coater | Laurell | WS-400-6NPP/LITE | |
Glove Box | M-Braun | Lab Master 130 | |
Solar Simulator | Thermo Oriel/Newport | ||
Keithley 2400 SMU | Keithley/Techtronix | 2400 | |
Keithley 7002 Multiplexer | Keithley/Techtronix | 7002 | |
Ultrasonic Cleaner | Kendal | HB-S-49HDT | |
Micropipette | Eppendorf | 200uL |