在这里,我们描述了学习的海马神经发生产后使用的器官切片培养技术的技术。此方法允许在体外操纵成年神经发生,并允许直接应用的药剂的培养海马。
在这里,我们描述了使用器官切片培养技术研究海马神经发生产后的啮齿类动物的大脑的技术。该方法保持了海马的特征地形的形态,同时允许直接应用的药剂给显影海马齿状回。此外,切片培养物可维持4周,因此,允许一个研究新生儿颗粒神经元的成熟过程。切片培养允许有效药理操纵海马切片的同时排除复杂的变量,例如与海马的深解剖位置,以及血脑屏障的不确定性。由于这些原因,我们试图专门优化器官切片文化为产后神经研究。
Adult neurogenesis in the mammalian hippocampus represents a remarkable example of the brain’s innate capacity for adaptability and plasticity. Dentate granule cells (DGCs) are generated from a renewable pool of neural progenitor cells in the hippocampal dentate gyrus, which is one of the two presently well-characterized neurogenic regions in the mammalian brain, and is thought to be particularly important for learning and memory. The hippocampus is part of the limbic system and has a deep location within the mammalian brain, which makes it a difficult target for precise pharmacological manipulation. Additionally, aberrant neurogenesis has been implicated in conditions, such as epilepsy, schizophrenia, and Alzheimer’s disease, which has prompted interest in understanding the influence of various pharmacological agents during the maturation and survival of newborn neurons. The distinction between postnatal and adult neurogenesis is blurred and previous studies have shown that many features of in vivo neuronal development in the early postnatal period and adulthood are similar25. Here we emphasize postnatal neurogenesis and suggest possible applications to adult neurogenesis.
Organotypic slice cultures provide an efficient in vitro method for studying various physiological properties of the mammalian hippocampus. The value of slice cultures prepared from rodent brains can be summarized in three main qualities: 1) the protocol is straightforward and requires readily available materials; 2) slice cultures allow for pharmacological studies that eliminate complex variables such as the deep anatomic location of the hippocampus and circumvents the blood brain barrier1; and 3) the well characterized structure of the hippocampus and tri-synaptic circuit is preserved2. Previous investigators have used the organotypic hippocampal culture to study synaptic development and physiology3,4, gliogenesis5-7, ischemic brain damage8,9, neuroprotection and neurorepair10-12 as well as epilepsy13-15.The slice cultures could also provide a useful model system allowing for the monitoring of cell development in conjunction with labeling of cells with green fluorescent protein (GFP) or other vital markers.
Slice cultures have also been previously employed to study postnatal hippocampal neurogenesis16-19, but one important factor in the majority of these studies is the well-characterized degeneration that results from explanting tissue from adult animals after approximately 2 weeks in vitro20,21. For this reason, slice cultures are typically prepared from early post-natal (P5-P10) mice or rat pups, which utilizes the improved viability of early postnatal brain tissue for culturing22. While previous studies have shown that the early postnatal and adult hippocampus differ with regards to synaptic physiology and the expression of specific neuronal subtypes23,24, there is substantial conservation of the choreographed developmental program that newborn dentate granule cells proceed through during maturation25. Additionally, recent studies have suggested that the physiological characteristics of newborn DGCs in culture are very similar to immature neurons in the acute hippocampal slice preparation16.
以下CldU(或尿嘧啶)施用,施用药剂的时间轴可以被选择为目标时特定发育窗户新生儿DGCS。例如,一个假想的代理可以在第二星期后CldU注射,这是建议用未成熟的神经元是在发育阶段的GABA被去极化的年龄相一致时被应用。使用该协议的将来的研究可以适应的药理剂和暴露于“量体裁衣”的方法对感兴趣的具体的实验问题的窗口。
用于确定切片文化是产后神经研究的一个有?…
The authors have nothing to disclose.
This work was supported by a research grant MOP 119271 to JMW by the Canadian Institute of Health Research. The authors would like to thank Ms. Yao Fang Tan for her outstanding technical assistance.
Name of Reagent/ Equipment | Company | Catalog Number | Comments/Description |
5-chloro-2'-deoxyuridine (CldU) | MP Biomedicals | 105478 | Hazardous, Carcinogenic |
Cell culture inserts, 30mm diameter, 0.4µm pore size | Thermo scientific | 140660 | Nuclon delta coating on these inserts provides better tissue adhesion and improves slice quality. |
Conical Centrifuge tubes (sterile) | Fisher Scientific | 14-432-22 | |
Dissector scissors (angled to side) | Fine Science Tools | 14082-09 | |
Minimum essential medium (MEM) | Gibco | 11095; liquid | Store at 4°C |
Eclipse Ni-U fluorescent microscope | Nikon | ||
Glue for tissue | Krazy Glue | KG585 | Use minimum amount of glue to achieve adhesion as any tissue exposed to glue will be unusable for IHC. |
Hank’s Balanced Salt Solution (HBSS) (500 mL) | Gibco | 14025-092 | Store at 4°C |
Horse Serum Heat Inactivated (500 mL) | Gibco | 16050-122 | Make 50 mL aliquots and store at -20°C |
Kimwipes | Kimberly-Clarke | TW 31KYPBX | |
Modified glass pipettes (bottom of Pasteur pipette removed and edge smoothed with Bunsen flame) | |||
Petri Dish (100mm x 15mm) and (60mm x 15mm) | Fisher Brand | FB0875712 and FB0875713A | |
Scalpel blades #11 | Fine Science Tools | 10011-00 | |
Scalpel handle #3 | Fine Science Tools | 10003-12 | |
Serological Pipettes | Sorfa Medical Plastic Co. | P8050 | |
Standard Pattern forceps | Fine Science Tools | 11000-12 | |
Sterile vacuum filter | Thermo-Scientific | 565-0020 | |
Surgical Scissors | Fine Science Tools | 14054-13 | |
Syringe driven filter unit | Millipore-Millex | SLGP033RS | |
Tissue chopper with moveable stage | Stoelting | 51425 | |
Fine tip paintbrush |