Summary

TIRFM e GFP-sondas sensíveis ao pH para avaliar Neurotransmitter Vesicle Dynamics em SH-SY5Y Neuroblastoma Cells: imagens de células e Análise de Dados

Published: January 29, 2015
doi:

Summary

This paper provides a method for investigating neurotransmitter vesicle dynamics in neuroblastoma cells, using a synaptobrevin2-pHluorin construct and Total Internal Reflection Fluorescence Microscopy. The strategy developed for image processing and data analysis is also reported.

Abstract

Vesículas sinápticas liberar neurotransmissores nas sinapses químicas através de um ciclo dinâmico de fusão e recuperação. Monitorando a atividade sináptica em tempo real e dissecando as diferentes etapas da exo-endocitose no nível single-vesícula são cruciais para entender as funções sinápticas na saúde e na doença.

Geneticamente codificado sondas sensíveis ao pH diretamente direcionados para vesículas sinápticas e Total Internal Reflection microscopia de fluorescência (TIRFM) fornecem resolução espaço-temporal necessário para acompanhar a dinâmica das vesículas. O campo evanescente gerado pela reflexão interna total só pode excitar fluorophores colocados em uma camada fina (<150 nm) acima da tampa de vidro no qual as células aderir, exatamente onde os processos de exo-endocitose ter lugar. As imagens de alto contraste resultantes são ideais para vesículas rastreamento e análise quantitativa de eventos de fusão.

Neste protocolo, SH-SY5Y n humanoeuroblastoma células são propostos como um modelo válido para estudar a libertação de neurotransmissores no nível único de vesículas por TIRFM, devido à sua superfície plana e a presença de vesículas dispersas. Os métodos para o crescimento SH-SY5Y como células aderentes e para transfectar-los com synapto-pHluorin são fornecidos, bem como a técnica para executar TIRFM e imagiologia. Finalmente, uma estratégia com o objetivo de selecionar, contar e analisar eventos de fusão a nível de célula inteira e única de vesículas é apresentado.

Para validar a abordagem de análise de procedimento de imagem e dados, a dinâmica das vesículas pHluorin-marcados são analisados ​​sob repouso e estimulada (despolarização concentrações de potássio) condições. Despolarização da membrana aumenta a freqüência de eventos de fusão e provoca um aumento paralelo do sinal de fluorescência líquida registrada em células inteiras. Análise Single-vesícula revela modificações de comportamento fusion-evento (altura aumentou pico e largura). Estes dados sugerem tha despolarização de potássio não só induz uma liberação maciça neurotransmissor, mas também modifica o mecanismo de fusão das vesículas e reciclagem.

Com a sonda fluorescente adequada, esta técnica pode ser utilizada em diferentes sistemas celulares para dissecar os mecanismos de secreção constitutiva e estimulada.

Introduction

A transmissão sináptica química entre neurónios é um dos principais mecanismos de comunicação no sistema nervoso. Baseia-se na liberação de neurotransmissores através de um ciclo dinâmico de fusão das vesículas e recuperação no local da pré-sináptico. Muitas das proteínas envolvidas na dinâmica das vesículas foram identificados; no entanto, sua contribuição específica para o fenômeno ainda precisa ser esclarecido 1.

A nossa compreensão é parcialmente limitada pelo facto de que os ensaios mais amplamente utilizados para a exo / endocitose nem sempre são as mais adequadas. Vários estudos relacionados com a fusão das vesículas e dinâmicas dependem de técnicas eletrofisiológicas. Esta técnica fornece uma melhor resolução temporal e é excelente para investigar a fusão inicial de vesículas para a membrana do plasma, mas é incapaz de detectar muitos dos eventos moleculares subjacentes que suportem a função de pré-sináptico. A microscopia electrónica, por outro lado, proporciona os melhores morphological descrição de cada passo singular, mas o aspecto dinâmico do acontecimento não pode ser capturado, como as amostras devem ser fixados a fim de ser analisado.

O advento de novas técnicas de gravação óptica 2,3, em combinação com os avanços na fluorescente sondas moleculares desenvolvimento 4-6, permite a visualização de processos exocíticas em células vivas, proporcionando novos níveis de informações sobre a estrutura e função sináptica.

Estudos iniciais exploradas corantes dependentes de atividade estirilo (FM1-43 e corantes orgânicos relacionados) 7,8. State-of-the-art técnicas de imagem empregar variantes da proteína verde fluorescente (GFP) (pHluorin) amarrado a vesículas proteínas luminais 9 sensíveis ao pH. Estas sondas são normalmente desligado quando presente nas vesículas devido ao baixo pH luminal. Após a fusão com a membrana plasmática, o interior das vesículas está exposta ao espaço extracelular neutro, o pH abruptamente aumenta, alivia a extinção dependente de protões de pHluorin e o sinal fluorescente rapidamente aparece. Como a mudança de pHluorin é mais rápido do que o evento de fusão, através da monitorização da fluorescência aumenta, a fusão das vesículas com a membrana podem ser medidos e analisados. Como as moléculas da superfície marcadas com pHluorin sofrem endocitose, o sinal de fluorescência, subsequentemente, regressa ao nível basal, por conseguinte, a mesma construção pode também ser utilizada para monitorar vesícula reciclagem 9.

Enquanto o sensor de pH com etiquetas de vesículas assegura a visualização de somente aquelas vesículas que realmente fundem com a membrana plasmática, a imagem em alta resolução espacial e temporal, é necessário para descrever detalhadamente os passos envolvidos nos processos de endocitose exo /. A técnica óptica que proporciona a resolução espacial e temporal, é necessário microscopia de fluorescência de reflexão interna total (TIRFM), um pedido de microscopia de fluorescência 10.

"> A reflexão interna total ocorre na interface entre a lamela de vidro e a amostra. Quando o percurso da luz atinge a lamela de vidro com um ângulo de incidência maior do que o ângulo crítico, a luz de excitação não é transmitido para a amostra, mas é completamente reflectido de volta. Nestas condições, forma-se uma na interface onda evanescente de luz e se propaga no meio com menor densidade óptica (a amostra). À medida que a intensidade do campo evanescente decai exponencialmente com a distância a partir da interface (com uma profundidade de penetração cerca de 100 nm) apenas os fluoróforos mais próximo em proximidade com a tampa-derrapante pode ser animado, enquanto os mais longe do limite não são. Em células transfectadas com construções de GFP, esta profundidade corresponde a proteínas expressas na membrana plasmática ou em estruturas vesiculares aproximando-se. Tal como fluoróforos no interior da célula não pode ser excitado, a fluorescência de fundo é minimizado, e uma imagem com um sinal muito alta / rato fundoio é formada 11.

Várias características tornam TIRFM a técnica de escolha para o monitoramento vesículas dinâmica. O perfeito contraste e o sinal-para-ruído elevado rácio de permitir a detecção de sinais de muito baixo a partir das vesículas resultantes individuais. Aquisição de imagem baseada em chip em cada quadro fornece a resolução temporal necessário para detectar processos altamente dinâmicos. Por fim, a exposição mínima de células à luz a qualquer outro avião na amostra reduz fortemente fototoxicidade e permite a gravação de longo lapso de tempo com duração de 12.

A análise dos dados continua a ser o aspecto mais desafiador e crucial desta técnica. A maneira mais simples para controlar a fusão das vesículas é medir a acumulação de proteínas repórter fluorescente à superfície da célula, ao longo do tempo 13. À medida que aumenta de fusão, líquidos aumenta de sinal de fluorescência bem. No entanto, este método pode subestimar o processo, particularmente em células grandes e em condições de repouso,porque os processos de endocitose e fotodegradação compensar o aumento na intensidade de fluorescência devido à vesícula exocitose. Um método alternativo é seguir cada evento único fusão 14. Este último método é muito sensível e pode revelar detalhes importantes sobre os mecanismos de fusão. No entanto, ele requer a seleção manual de eventos únicos, porque os procedimentos completamente automatizados para seguir vesículas e registrar a flutuação de seus sinais fluorescentes nem sempre estão disponíveis. Observação da dinâmica das vesículas requer células de amostragem em alta freqüência. Isto gera uma grande quantidade de dados que não podem ser analisados ​​manualmente.

A proposta deste artigo é o de otimizar a técnica de imagem TIRFM para monitorar o basal e liberação de neurotransmissores estimulada na linha de células de neuroblastoma SH-5YSY, e descrever, passo-a-passo, um procedimento desenvolvido no laboratório de análise de dados, tanto em níveis de célula inteira e única de vesículas.

Protocol

1. Cultura de Células e Transfection Cultura de células SH-SY5Y NOTA: Os experimentos foram realizados utilizando o neuroblastoma humano SH-SY5Y (ATCC # CRL-2266) 15. As células SH-SY5Y crescem como uma mistura de agregados flutuantes e as células aderentes. Siga as instruções relatadas no protocolo (densidade celular, a relação de divisão, etc.) Para ter células que crescem firmemente ligados a tampa de vidro, que é crucial para TIRFM. Antes de …

Representative Results

Os procedimentos de imagem TIRF e análise de dados descritos foram concebidos para estudar vesículas dinâmica em sistemas celulares. Esta técnica pode ser usada para determinar os efeitos das moléculas de sinalização e as drogas em eventos de fusão e dinâmica das vesículas de neurotransmissores 17. Usando as proteínas da membrana de plasma marcadas com GFP, a análise TIRFM foi empregue para caracterizar o tráfico constitutiva de transportadores de glutamato GFP em células gliais e células epite…

Discussion

Este trabalho apresenta um protocolo para a imagem e analisar vesículas dinâmica em células secretoras, usando vetores codificados em cDNA fluorescentes e TIRFM. Os principais elementos de uma imagem com qualidade por TIRFM são a seleção do modelo de celular e transfecção de células com indicadores ópticos geneticamente codificados de liberação da vesícula e reciclagem.

TIRFM é idealmente adequado para as células em crescimento aderente a uma cobertura de vidro planas e sufici…

Declarações

The authors have nothing to disclose.

Acknowledgements

Os autores gostariam de agradecer a Università degli Studi di Milano para apoio a Eliana Di Cairano (bolsa de pós-doutoramento) e Stefania Moretti (Ph.D. comunhão). Este trabalho foi apoiado pela Research University Programa PUR a CP

Gostaríamos de agradecer ao Prof. Jeremy M. Henley, School of Biochemistry, University of Bristol, Reino Unido, para o pHluorin construir e Dr. Francesco Dotti para assistência na análise de dados, e Silvia Marsicano para assistência técnica.

Materials

Equipment
Axio Observer Z1 Zeiss 491912-9850-000 inverted microscope
http://www.zeiss.com/microscopy/en_de/products/light-microscopes/axio-observer-for-biology.html#introduction
Multiline Argon Laser Lasos 77 Lasos 00000-1312-752 multi-line (458/488/514 nm), 100mW argon-ion laser
http://www.lasos.com/products/argon-ion-laser
Laser TIRF slider Zeiss 423681-9901-000 http://www.zeiss.com/microscopy/en_de/products/imaging-systems/single-molecular-imaging-laser-tirf-3.html
100x Objective Zeiss 421190-9900-000 Oil, NA 1.45 Alpha-Plan
https://www.micro-shop.zeiss.com/?l=en&p=us&f=o&a=v&m=a&id=421
190-9900-000&ss=1
CCD Camera RetigaSRV Fast 1394  QImaging http://www.qimaging.com/products/datasheets/Retiga-SRV.pdf
LAMBDA 10-3 optical filter changer with SmartShutter Sutter Instrument Company http://www.sutter.com/IMAGING/lambda103.html
Software
Image ProPlus 6.3 Software Media Cybernetics spot selection, ROI selection, fluorescence intensity determination
http://www.mediacy.com/index.aspx?page=IPP
Excel Microsoft photobleaching correction, whole-cell and single-vesicle analyses
http://office.microsoft.com/it-it/excel/
GraphPad Prism 4.00  GraphPad Software, Inc. statistical analysis
http://www.graphpad.com/scientific-software/prism/

Referências

  1. Sudhof, T. C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509-547 (1146).
  2. Denk, W., Svoboda, K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron. 18 (3), 351-357 (1997).
  3. Helmchen, F., Svoboda, K., Denk, W., Tank, D. W. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci. 2 (11), 989-996 (1999).
  4. Tsien, R. Y. The green fluorescent protein. Annu Rev Biochem. 67, 509-544 (1998).
  5. Matz, M. V., et al. Fluorescent proteins from non bioluminescent Anthozoa species. Nat Biotechnol. 17 (10), 969-9673 (1999).
  6. Ribchester, R. R., Mao, F., Betz, W. J. Optical measurements of activity-dependent membrane recycling in motor nerve terminals of mammalian skeletal muscle. Proc Biol Sci. 255 (1342), 61-66 (1994).
  7. Polo-Parada, L., Bose, C. M., Landmesser, L. T. Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions. Neuron. 32 (5), 815-828 (2001).
  8. Gaffield, M. A., Betz, W. J. Imaging synaptic vesicle exocytosis and endocytosis with FM dyes. Nat Protoc. 1 (6), 2916-2921 (2006).
  9. Miesenböck, G., De Angelis, D. A., Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 394 (6689), 192-195 (1998).
  10. Axelrod, D. Total internal reflection fluorescence microscopy. Methods Cell. Biol. 89, 169-221 (2008).
  11. Sankaranarayanan, S., De Angelis, D., Rothman, J. E., Ryan, T. A. The Use of pHluorins for Optical Measurements of Presynaptic Activity. Biophys. J. 79, 2199-2208 (2000).
  12. Mattheyses, A. L., Simon, S. M., Rappoport, J. Z. Imaging with total internal reflection fluorescence microscopy for the cell biologist. J. Cell Sci. 123, 3621-3628 (2010).
  13. Wyatt, R. M. Balice-Gordon R.J. Heterogeneity in Synaptic Vesicle Release at Neuromuscular Synapses of Mice Expressing SynaptopHluorin. J. Neurosci. 28 (1), 325-335 (2008).
  14. Tsuboi, T., Rutter, G. A. Multiple forms of "kiss-and-run" exocytosis revealed by evanescent wave microscopy. Curr Biol. 13, 563-567 (2003).
  15. Miloso, M., et al. Retinoic Acid-Induced Neuritogenesis of Human Neuroblastoma SH-SY5Y Cells Is ERK Independent and PKC Dependent. J. Neurosci. Res. 75, 241-252 (2004).
  16. Jaskolski, F., Mayo-Martin, B., Jane, D., Henley, J. M. Dynamin-dependent Membrane Drift Recruits AMPA Receptors to Dendritic Spines. J Biol Chem. 284 (18), 12491-12503 (2009).
  17. Treccani, G., et al. Stress and corticosterone rapidly increase the readily releasable pool of glutamate vesicles in synaptic terminals of prefrontal and frontal cortex. Mol Psychiatry. 19 (4), 433-443 (1038).
  18. D’Amico, A., et al. The surface density of the glutamate transporter EAAC1 is controlled by interactions with PDZK1 and AP2 adaptor complexes. Traffic. 11 (11), 1455-1470 (2010).
  19. Perego, C., Di Cairano, E. S., Ballabio, M., Magnaghi, V. Neurosteroid allopregnanolone regulates EAAC1-mediated glutamate uptake and triggers actin changes in Schwann cells. J Cell Physiol. 227 (4), 1740-1751 (2012).
  20. Bergeron, A., Pucci, L., Bezzi, P., Regazzi, R. Analysis of synaptic-like microvesicles exocytosis of B-cells using a live imaging technique. PlosOne. 9, e87758 (2014).
  21. Encinas, M., et al. Sequential treatment of SH-Sy5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neutrophic factor-dependent, human neuron-like cells. J. Neurochem. 75 (3), 991-1003 (2000).
  22. Kume, T., et al. Dibutyryl cyclic AMP induces differentiation of human neuroblastoma SH-SY5Y cells into a noradrenergic phenotype. Neurosci Lett. 443 (3), 199-203 (2008).
  23. Diaspro, A., Chirico, G., Usai, C., Ramoino, P., Dobrucki, J., Pawley, J. B. Photobleaching. Handbook of Biological Confocal Microscopy. , 690-699 (2006).
  24. Rossano, A. J., Chouhan, A. K., Macleod, G. M. Genetically encoded pH-indicators reveal activity-dependent cytosolic acidification of Drosophila motor nerve termini in vivo. J Physiol. 591 (7), 1691-1706 (2013).
check_url/pt/52267?article_type=t

Play Video

Citar este artigo
Daniele, F., Di Cairano, E. S., Moretti, S., Piccoli, G., Perego, C. TIRFM and pH-sensitive GFP-probes to Evaluate Neurotransmitter Vesicle Dynamics in SH-SY5Y Neuroblastoma Cells: Cell Imaging and Data Analysis. J. Vis. Exp. (95), e52267, doi:10.3791/52267 (2015).

View Video