Summary

检测真正的IgE的表达小鼠B​​系细胞

Published: December 01, 2014
doi:

Summary

In vitro analysis of class switch recombination in mice is challenging due to cytophilic IgE molecules bound to Fc receptors on the surface of B cells. We describe a method for IgE detection using trypsin-mediated cleavage of surface-bound IgE prior to fixation and permeabilization for cytoplasmic fluorescence staining.

Abstract

B淋巴细胞免疫球蛋白重链(IgH基因)类别转换重组(CSR)是一种方法,其中最初表达IgM的切换到其他的IgH同种型,如IgA,IgE和IgG抗体。的IgH CSR的体外测定是用于若干生物过程包括从DNA重组和修复的分子和细胞免疫学方面的研究的重要方法, 在体外的CSR测定涉及在活化的B细胞的流式细胞仪测量表面Ig的表达。而IgA和IgG亚类的测量是简单的,IgE介导的通过该方法测定是有问题的,由于可溶性IgE结合到FcεRII/ CD23表达活化的B细胞的表面上。在这里,我们描述的产生IgE的,在文化都发生了CSR小鼠B细胞精确测量一个独特的程序。该方法是基于对在细胞表面的IgE CD23复合物的胰蛋白酶介导的裂解,允许检测由CY产生IgE的B谱系细胞toplasmic染色。这个程序提供了企业社会责任的流式细胞仪分析,IgE的一个方便的解决方案。

Introduction

在免疫球蛋白重链(IGH)类开关重组(CSR)的小鼠和人类, 室内运动场μ恒定区外显子(Cμ)被删除并通过几套下游恒定区外显子的一个(C H S)( 更换Cγ, Cε和Cα),导致从生产的IgM的一个开关来产生其它的Ig类( 例如 IgG抗体,IgE或IgA的)的。 CSR发生内开关(S)的区域,这是位于5'至每一组C H S 1 1-10 kb的序列。激活诱导胞嘧啶核苷脱氨酶(AID)酶通过胞苷脱氨活动启动CSR。

IgE的是过敏性疾病2的关键调解人和IgE水平是如何产生和调控可能会打开大门,新的治疗方法,以过敏性疾病的认识。在小鼠和人类,IgE的是最严格的监管免疫球蛋白同型。是的IgE的水平数千恬正常检测ES小于其他的IgH同种型3,但可以高度升高的疾病状态4。然而,CSR至IgE的是不完全的了解。利用体外激活的B细胞的IL-4与两种抗CD40和LPS结合,诱导的CSR既IgG1和IgE的5。活化的B细胞表达低亲和性IgE受体FcεRII/ CD23 2,6,其结合可溶性IgE的分泌在培养后的CSR。因此,当用流式细胞仪分析,B细胞与受体结合的IgE染色类似于B细胞内源性表达的IgE 7。同时,已知小鼠的B细胞表达低亲和力的IgG受体FcγRIIB1(CD32)8,根据我们的经验它不会出现干扰类别转换为IgG1的测定。然而,B细胞活化培养后测量的IgE切换时,非特异性表面结合的IgE可能掩盖了分析。与普通的染色方法,非IgE表达细胞染色阳性的IgE。

这里所概述的是,已被利用来从小鼠9进行的CSR测定法和检测真正的IgE表达的B细胞的策略– 11。激活B细胞与胰蛋白酶治疗,常见的实验室试剂消化蛋白质,同时删除cytophylic和膜结合表面的IgE。随后的通透和染色质的IgE从而揭示了真正的产生IgE的细胞。

Protocol

注:此处描述的所有实验都按照实验动物管理和使用委员会(IACUC)的指导方针并经动物研究儿童医院(ARCH),马萨诸塞州波士顿。 1.试剂的配制 1000倍的IL-4库存:稀释的IL-4细胞因子,以20微克/毫升的H 2 O或0.1%牛血清白蛋白(BSA)。在200μl等份分配到1.5ml微量管中并储存在-20℃。 1000倍的抗CD40:从制造商获得,在1.0毫克/毫升,保存于4℃。 B细胞刺激介质:向…

Representative Results

这个程序已经成功实施,研究企业社会责任,以IgE的小鼠B细胞。为了证明的效率的测量的CSR,我们刺激的小鼠脾B细胞与抗CD40和IL-4如先前所描述的11。刺激后五天,收集细胞并用上述与荧光标记的IgM,的IgG1,IgE和B220(CD45R)抗体染色的协议处理。门控的爆破淋巴细胞( 图1),的IgE +细胞的明确的人口不能干净地鉴别未经胰蛋白酶处理( 图2a)。然而,之前的固?…

Discussion

小鼠脾B细胞在培养用抗CD40和IL-4的刺激将模拟T辅助2型(T H 2)的相互作用,激励类别转换为IgG1和IgE 5。 B细胞可用于CSR在总脾细胞12或作为纯化的脾B细胞11的情况下被激活。在协议中(步骤2.3)所指出的,B细胞富集是可选的,并且是在实验者的判断,以确定它是否将是有益的。使用CD45R(B220)B细胞的正磁分离标记的珠子在这里使用。分离后,建议通过FACS来检查细…

Declarações

The authors have nothing to disclose.

Acknowledgements

DRW是由美国国立卫生研究院资助AI089972和AI113217,并通过粘膜免疫学研究团队的支持,并拥有一个事业奖从宝来惠康基金医科大学的科学家。

Materials

Name Company Catalog Number Comments
Anti-Mouse IgE FITC BD Pharmingen 553415 clone R35-72
Rat Anti-Mouse IgG1 PE BD Pharmingen 550083 clone A85-1
Methanol BDH BDH1135-4LP Keep at -20 °C
Falcon Cell Strainer 40 µm Nylon Corning 352340
Falcon Cell Strainer 70 µm Nylon Corning 352350
Anti-Hu/Mo CD45R(B220) PerCP-Cy5.5 eBioscience 45-4052-82 clone RA3-6B2
anti-Mouse/Rat CD40 eBioscience 16-0402-85 clone HM40-3
RPMI Medium 1640 Gibco 11875-093
HEPES (1M) Gibco 15630-080
MEM-NEAA (100X) Gibco 11140-050
Phosphate Buffered Saline (10X) Lifetechnologies (Corning) 46-013-CM
MACS CD45R (B220) microbeads  Miltenyi Biotec 130-049-501
MACS purification column Miltenyi Biotec 130-042-401
IL-4 PeproTech 214-14 Reconstitute in water or 0.1% BSA
Formalin Solution, Neutral Buffered, 10% Sigma Aldrich HT501128-4L
Trypsin-EDTA Solution (10X) Sigma Aldrich T4174-100mL 5.0g Trypsin, 2.0g EDTAŸ4Na per Liter of 0.9% NaCl
Penicillin-Streptomycin Sigma Aldrich P0781-100mL 10,000U Penicillin; 10 mg/mL Streptomycin (100X)
L-Glutamine 200mM Sigma Aldrich G7513
2-mercaptoethanol (99%) Sigma Aldrich M6250-100mL
Red cell lysis buffer Sigma Aldrich R7757
Rat Anti-Mouse IgM RPE/cy7 SouthernBiotech 1140-17 clone 1B4B1
HyClone Fetal Calf Serum Thermo SH30910.03
B cell Stimulation media B cell stimulation media consists of RPMI with fetal calf serum (15%), 20 mM HEPES, 1X MEM-NEAA, 2.0mM L-glutamine,  1X Penicillin-Streptomycin (Penicillin:100 U/ml, Streptomycin: 100 µg/ml), Beta-mercaptoethanol (7 µL/L), IL-4 (20 ng/mL), and anti-CD40 (1 µg/mL)

Referências

  1. Chaudhuri, J., et al. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Advances in immunology. 94, 157-214 (2007).
  2. Gould, H. J., Sutton, B. J. IgE in allergy and asthma today. Nature reviews. Immunology. 8, 205-217 (2008).
  3. Winter, W. E., Hardt, N. S., Fuhrman, S. . Immunoglobulin E. Archives of Pathology & Laboratory Medicine. 124 (9), 1382-1385 (2000).
  4. Ozcan, E., Notarangelo, L. D., Geha, R. S. Primary immune deficiencies with aberrant IgE production. Journal of Allergy and Clinical Immunology. 122, 1054-1062 (2008).
  5. Bacharier, L. B., Geha, R. S. Molecular mechanisms of IgE regulation. The Journal of allergy and clinical immunology. 105, 547-558 (2000).
  6. Yokota, A., et al. Two species of human Fc epsilon receptor II (Fc epsilon RII/CD23): tissue-specific and IL-4-specific regulation of gene expression. Cell. 55 (4), 611-618 (1988).
  7. Boboila, C., et al. Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4. The Journal of experimental medicine. 207, 417-427 (2010).
  8. Nimmerjahn, F., Ravetch, J. Fcgamma receptors as regulators of immune responses. Nature reviews. Immunology. 8 (1), 34-47 (2008).
  9. Callen, E., et al. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell. 153 (6), 153-1280 (2013).
  10. Wesemann, D. R., et al. Reprogramming IgH isotype-switched B cells to functional-grade induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America. 109 (34), 13745-13750 (2012).
  11. Wesemann, D., et al. Immature B cells preferentially switch to IgE with increased direct Sµ to Sε recombination. The Journal of experimental medicine. 208 (13), 2733-2746 (2011).
  12. Zarrin, A. A., et al. An evolutionarily conserved target motif for immunoglobulin class-switch recombination. Nature immunology. 5, 1275-1281 (2004).
  13. Fan, G., et al. Development of a class-specific polyclonal antibody-based indirect competitive ELISA for detecting fluoroquinolone residues in milk. Journal of Zhejiang University. Science. B. 13 (7), 545-554 (2012).
  14. Perez, O., Krutzik, P., Nolan, G. Flow cytometric analysis of kinase signaling cascades. Methods in molecular biology (Clifton, N.J.). 263, 67-94 (2004).
  15. Jamur, M., Oliver, C. Cell fixatives for immunostaining. Methods in molecular biology (Clifton, N.J.). 588, 55-61 (2010).
  16. Ishizaka, T., Ishizaka, K. Mechanisms of passive sensitization. IV. Dissociation of IgE molecules from basophil receptors at acid pH. Journal of immunology (Baltimore, MD. : 1950). 112 (3), 1078-1084 (1950).
  17. Erazo, A., et al. Unique Maturation Program of the IgE Response In Vivo. Immunity. 26, 191-203 (2007).
  18. Xiong, H., Dolpady, J., Wabl, M., Curotto de Lafaille, M. A., Lafaille, J. J. Sequential class switching is required for the generation of high affinity IgE antibodies. Journal of Experimental Medicine. 209, 353-364 (2012).
  19. Yang, Z., Sullivan, B., Allen, C. Fluorescent in vivo detection reveals that IgE(+) B cells are restrained by an intrinsic cell fate predisposition. Immunity. 36 (5), 857-872 (2012).
  20. Berkowska, M. A., et al. Human IgE(+) B cells are derived from T cell-dependent and T cell-independent pathways. The Journal of allergy and clinical immunology. , (2014).
  21. He, J. -. S., et al. The distinctive germinal center phase of IgE+ B lymphocytes limits their contribution to the classical memory response. The Journal of experimental medicine. 210 (12), 2755-2771 (2013).
  22. Keegan, A., Fratazzi, C., Shopes, B., Baird, B., Conrad, D. Characterization of new rat anti-mouse IgE monoclonals and their use along with chimeric IgE to further define the site that interacts with Fc epsilon RII and Fc epsilon RI. Molecular immunology. 28 (10), 1149-1154 (1991).

Play Video

Citar este artigo
Gallagher, M. P., Shrestha, A., Magee, J. M., Wesemann, D. R. Detection of True IgE-expressing Mouse B Lineage Cells. J. Vis. Exp. (94), e52264, doi:10.3791/52264 (2014).

View Video