Summary

在玻碳和氟掺杂的氧化锡电极的含乙烯基聚吡啶基复合还原电聚合

Published: January 30, 2015
doi:

Summary

A procedure for performing reductive electropolymerization of vinyl-containing compounds onto glassy carbon and fluorine doped tin-oxide coated electrodes is presented. Recommendations on electrochemical cell configurations and troubleshooting procedures are included. Although not explicitly described here, oxidative electropolymerization of pyrrole-containing compounds follows similar procedures to vinyl-based reductive electropolymerization.

Abstract

可控电极表面改性是在许多领域,特别是那些与太阳能电池的燃料的应用是重要的。电解是通过利用施加的电势来启动,在亥姆霍兹层基板的聚合镀层在电极的表面上的聚合物膜的一个表面改性技术。这种有用的技术,最早是由美国北卡罗来纳大学教堂山分校在20世纪80年代初穆雷梅耶尔合作建立并用来研究含无机复合物作为单体基材薄膜众多的物理现象。在这里,我们突出显示用无机复合涂层的电极的程序通过执行含乙烯基的聚吡啶基络合物的还原性电解到玻璃碳和氟掺杂氧化锡涂层的电极。电化学电池配置和故障排除程序的建议都包括在内。虽然不是ê这里xplicitly描述的,含吡咯的化合物的氧化电聚合遵循类似程序,以乙烯基类还原性电解,但远不如敏感为氧气和水。

Introduction

电解是利用施加的电势以引发单体的前体的聚合直接在电极的表面上并已被利用来生产薄电活性和/或光化学活性多吡啶薄膜上的电极和半导体的表面上。1-4电催化的聚合技术, 5-10电子转移,11,12光化学,13-16电致变色,17和配位化学18已经研究了电聚合膜。这项技术最早是在北卡罗莱纳州的乙烯基3,5,7,8,11-15,19,20和吡咯6,9的电化学一个迈耶-穆雷合作大学,21-24衍生我TAL络合物对各种导电衬底。 图1给出了一些,当配位到金属配合物,已产生electropolymers共同吡啶基配体。在还原性电解,含乙烯基化合物的电解时发生缀合的乙烯基吡啶配体的减少,而与吡咯官能配位体,电解是由吡咯部分的氧化发起的,从而导致氧化电解( 图2)。电解技术,用于直接连接几乎任何过渡金属配合物的任何电极上设置的一般化方法的目的开发的。该方法的多样性打开大门,electropolymer修饰电极的大量调查。

而相比之下,其他附接策略,这涉及直接接合到电极,电解提供了副antage不需要电极表面预修饰。因此它可以应用无论表面组成或形态4,10,25,以任何数量的导电基板,26这种多功能性是变化的物理性质的聚合物长度的增长的结果;所述单体可溶于电解液而是作为发生聚合和交联rigidifies薄膜,沉淀和物理吸附在电极表面发生( 3)。27

相比氧化物表面结合的羧酸酯,它们是不稳定的氧化物表面的水,或膦酸酯衍生的复合物,它们是不稳定的,在升高的pH值的,在太阳能燃料研究常用,这些界面的电极的聚合物膜结构提供了稳定性的额外的好处在各种媒体,包括有机溶剂和水在​​大的pH范围(0-14)。28-30电聚合还可以存大范围明显的表面覆盖范围,从亚单层至数十或数百当量单层,而羧酸盐或磷酸盐衍生复合接口结构局限于单层表面覆盖度的电影。

虽然任何数量的乙烯基或含吡咯吡啶基和聚吡啶化合物能够聚合的,使用[Ru II(PhTpy)(5,5'- dvbpy)(MeCN中)](PF 6)2,(1; PhTpy是4'-苯基-2,2':6',2'' -三联吡啶; 5,5'- dvbpy是5,5'-二乙烯基-2,2'-联吡啶; 图4)将被用作模型复杂证明还原电解上玻璃碳和氟掺杂的氧化锡,FTO,本报告中的电极1是现代electropolymer前体具有潜在的电的应用的一个例子,并且由于其金属对利GAND电荷转移,MLCT,吸收光谱躺在光光谱的可见光区,可以用UV-Vis光谱。18,30请注意,某些结果呈现此处为1已经发表在稍微修改的形式。18调查

Protocol

1.合成1 根据- :合成1(图4; 5,5'- dvbpy是5,5'-二乙烯基-2,2'-联吡啶三联吡啶,2''PhTpy是4'-苯基-2,2'6')步骤前面所述。18 2.准备的1 1.3毫单体溶液中的电解质溶液制备的四正丁基六氟磷酸盐的0.1M库存电解质溶液,TBAPF 6,在乙腈,MeCN中。 放置的MeCN过度活化的3埃?…

Representative Results

Electropolymer增长遵守规定的CV实验(协议文本STEP 3.3.2)的进展情况时,最容易识别。 图5体现在0.071厘米2(3毫米直径)electropolymer增长,1玻碳电极。在实验的第一周期产生一个伏安大致类似于该预计为类似浓度( 图5,黑色迹线),但的钌溶液在连续循环,通过第 1 次和第2 次的配体为本还原波,日益增强的电流是观察到的( …

Discussion

电化学提供了一个大范围的可控变量是不常见的其他技术。除了 ​​标准的反应变量,如试剂(单体)浓度,温度,溶剂 ,电解可以另外通过共同的电化学方法电化学实验参数控制。 CV扫描速率,切换电位,和循环次数影响electropolymers的沉积。例如,作为循环通过配体还原波的数量增加,所以也是表面覆盖。在这里提出的范围内,是线性的相对于执行的周期数( 见表1)。

Declarações

The authors have nothing to disclose.

Acknowledgements

我们承认化学的弗吉尼亚军事学院(VMI)处获得支持的电化学实验和仪器(LSC和JTH)。学院院长的办公室VMI与支持朱庇特的出版物相关的生产费用。我们承认UNC EFRC:中心太阳能燃料,由能源,科学办公室,基础能源科学根据奖号码DE-SC0001011办公室,美国能源部资助支持复合和合成材料的表征的能源前沿研究中心(DPH )。

Materials

Name of Reagent/ Equipment Company Catalog Number
Tetrabutylammonium hexafluorophosphate for electrochemical analysis, ≥99.0%,  Sigma-Aldrich 86879-25G
Acetonitrile (Optima LC/MS), Fisher Chemical Fisher Scientific A955-4
3 mm dia. Glassy Carbon Working Electrode CH Instruments CH104
Non-Aqueous Ag/Ag+ Reference Electrode w/ porous Teflon Tip CH Instruments CHI112
Platinum gauze Alfa Aesar AA10282FF 
Electrode Polishing Kit CH Instruments CHI120
Cole-Parmer KAPTON TAPE 1/2IN X 36 YD Fisher Scientific NC0099200
Fisherbrand Polypropylene Tubing 4-Way Connectors Fisher Scientific 15-315-32B
500mL Bottle, Gas Washing, Tall Form, Coarse Frit Chemglass CG-1114-15
3 compartment H-Cell for electrochemistry Custom made H-cell with 3 compartments

Referências

  1. Abruña, H. D. Coordination chemistry in two dimensions: chemically modified electrodes. Coordination Chemistry Reviews. 86, 135-189 (1988).
  2. Waltman, R. J., Bargon, J. Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Canadian Journal of Chemistry. 64, 76-95 (1986).
  3. Zhong, Y. -. W., Yao, C. -. J., Nie, H. -. J. Electropolymerized films of vinyl-substituted polypyridine complexes: Synthesis, characterization, and applications. Coordination Chemistry Reviews. 257, 1357-1372 (2013).
  4. Bard, A. J., Faulkner, L. R. . Electrochemical Methods Fundamentals and Applications. , (1980).
  5. Ramos Sende, J. A., et al. Electrocatalysis of CO2 Reduction in Aqueous Media at Electrodes Modified with Electropolymerized Films of Vinylterpyridine Complexes of Transition Metals. Inorganic Chemistry. 34, 3339-3348 (1995).
  6. Cosnier, S., Deronzier, A., Moutet, J. -. C. Electrochemical coating of a platinum electrode by a poly(pyrrole) film containing the fac-Re(2,2′-bipyridine)(CO)3Cl system application to electrocatalytic reduction of CO2. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 207, 315-321 (1986).
  7. Cosnier, S., Deronzier, A., Moutet, J. -. C. Electrocatalytic reduction of CO2 on electrodes modified by fac-Re(2,2′-bipyridine)(CO)3Cl complexes bonded to polypyrrole films. Journal of Molecular Catalysis. 45, 381-391 (1988).
  8. Toole, T. R., et al. Electrocatalytic reduction of CO2 at a chemically modified electrode. Journal of the Chemical Society, Chemical Communications. 20, 1416-1417 (1985).
  9. Cheung, K. -. C., et al. Ruthenium Terpyridine Complexes Containing a Pyrrole-Tagged 2,2′-Dipyridylamine Ligand—Synthesis. Crystal Structure, and Electrochemistry. Inorganic Chemistry. 51, 6468-6475 (2012).
  10. Ashford, D. L., et al. Water Oxidation by an Electropolymerized Catalyst on Derivatized Mesoporous Metal Oxide Electrodes. Journal of the American Chemical Society. 136, 6578-6581 (2014).
  11. Abruña, H. D., Denisevich, P., Umana, M., Meyer, T. J., Murray, R. W. Rectifying interfaces using two-layer films of electrochemically polymerized vinylpyridine and vinylbipyridine complexes of ruthenium and iron on electrodes. Journal of the American Chemical Society. 103, 1-5 (1981).
  12. Gould, S., Gray, K. H., Linton, R. W., Meyer, T. J. Microstructures in thin polymeric films. Photochemically produced molecular voids. Inorganic Chemistry. 31, 5521-5525 (1992).
  13. Devenney, M., et al. Excited State Interactions in Electropolymerized Thin Films of Ru(II). Os(II), and Zn(II) Polypyridyl Complexes. The Journal of Physical Chemistry A. 101, 4535-4540 (1997).
  14. Moss, J. A., et al. Sensitization and Stabilization of TiO2 Photoanodes with Electropolymerized Overlayer Films of Ruthenium and Zinc Polypyridyl Complexes: A Stable Aqueous Photoelectrochemical Cell. Inorganic Chemistry. 43, 1784-1792 (2004).
  15. Yang, J., Sykora, M., Meyer, T. J. . Electropolymerization of Vinylbipyridine Complexes of Ruthenium(II) and Osmium(II) in SiO2 Sol−Gel Films. Inorganic Chemistry. 44, 3396-3404 (2005).
  16. Nie, H. -. J., Shao, J. -. Y., Wu, J., Yao, J., Zhong, Y. -. W. Synthesis and Reductive Electropolymerization of Metal Complexes with 5,5′-Divinyl-2,2′-Bipyridine. Organometallics. 31, 6952-6959 (2012).
  17. Yao, C. -. J., Zhong, Y. -. W., Nie, H. -. J., Abruña, H. D., Yao, J. Near-IR Electrochromism in Electropolymerized Films of a Biscyclometalated Ruthenium Complex Bridged by 1,2,4,5-Tetra(2-pyridyl)benzene. Journal of the American Chemical Society. 133, 20720-20723 (2011).
  18. Harrison, D. P., et al. Coordination Chemistry of Single-Site Catalyst Precursors in Reductively Electropolymerized Vinylbipyridine Films. Inorganic Chemistry. 52, 4747-4749 (2013).
  19. Calvert, J. M., et al. Synthetic and mechanistic investigations of the reductive electrochemical polymerization of vinyl-containing complexes of iron(II), ruthenium(II), and osmium(II). Inorganic Chemistry. 22, 2151-2162 (1983).
  20. Moss, J. A., Argazzi, R., Bignozzi, C. A., Meyer, T. J. Electropolymerization of Molecular Assemblies. Inorganic Chemistry. 36, 762-763 (1997).
  21. Deronzier, A., Eloy, D., Jardon, P., Martre, A., Moutet, J. -. C. Electroreductive coating of electrodes from soluble polypyrrole-ruthenium (II) complexes: ion modulation effects on their electroactivity. Journal of Electroanalytical Chemistry. 453, 179-185 (1998).
  22. Mola, J., et al. Ru-Hbpp-Based Water-Oxidation Catalysts Anchored on Conducting Solid Supports. Angewandte Chemie International Edition. 47, 5830-5832 (2008).
  23. Deronzier, A., Moutet, J. -. C. Polypyrrole films containing metal complexes: syntheses and applications. Coordination Chemistry Reviews. 147, 339-371 (1996).
  24. Sabouraud, G., Sadki, S., Brodie, N. The mechanisms of pyrrole electropolymerization. Chemical Society Review. 29, 283-293 (2000).
  25. Denisevich, P., Abruña, H. D., Leidner, C. R., Meyer, T. J., Murray, R. W. Electropolymerization of vinylpyridine and vinylbipyridine complexes of iron and ruthenium: homopolymers, copolymers, reactive polymers. Inorganic Chemistry. 21, 2153-2161 (1982).
  26. Younathan, J. N., Wood, K. S., Meyer, T. J. Electrocatalytic reduction of nitrite and nitrosyl by iron(III) protoporphyrin IX dimethyl ester immobilized in an electropolymerized film. Inorganic Chemistry. 31, 3280-3285 (1992).
  27. Ikeda, T., Schmehl, R., Denisevich, P., Willman, K., Murray, R. W. Permeation of electroactive solutes through ultrathin polymeric films on electrode surfaces. Journal of the American Chemical Society. 104, 2683-2691 (1982).
  28. Concepcion, J. J., et al. Making Oxygen with Ruthenium Complexes. Accounts of Chemical Research. 42, 1954-1965 (2009).
  29. Chen, Z., Concepcion, J. J., Jurss, J. W., Meyer, T. J. Single-Site, Catalytic Water Oxidation on Oxide Surfaces. Journal of the American Chemical Society. 131, 15580-15581 (2009).
  30. Lapides, A. M., et al. Stabilization of a Ruthenium(II) Polypyridyl Dye on Nanocrystalline TiO2 by an Electropolymerized Overlayer. Journal of the American Chemical Society. 135, 15450-15458 (2013).
  31. Paulson, S. C., Sapp, S. A., Elliott, C. M. Electrochemical and Spectroelectrochemical Investigations into the Nature of Charge-Trapping in Electrochemically-Generated Homopolymer Films of Tris(4-vinyl-4‘-methyl-2,2‘-bipyridine)ruthenium(II). The Journal of Physical Chemistry B. 105, 8718-8724 (2001).
  32. Laviron, E., Roullier, L. General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules: Applications to modified electrodes. J. Electroanal. Chem. Interfacial Electrochem. 115, 65-74 (1980).
  33. Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19-28 (1979).
  34. Ratcliff, E. L., Jenkins, J. L., Nebesny, K., Armstrong, N. R. Electrodeposited, "Textured" Poly(3-hexyl-thiophene) (e-P3HT) Films for Photovoltaic Applications. Chemistry of Materials. 20, 5796-5806 (2008).
check_url/pt/52035?article_type=t

Play Video

Citar este artigo
Harrison, D. P., Carpenter, L. S., Hyde, J. T. Reductive Electropolymerization of a Vinyl-containing Poly-pyridyl Complex on Glassy Carbon and Fluorine-doped Tin Oxide Electrodes. J. Vis. Exp. (95), e52035, doi:10.3791/52035 (2015).

View Video