Summary

简单的检测方法的社交回避的量化<em>果蝇</em

Published: December 13, 2014
doi:

Summary

Here, we present a protocol to quantify the avoidance of stressed individuals. This paradigm is powerful yet user-friendly and can be used to assess the influence of genes and environment on one kind of social interaction in Drosophila melanogaster.

Abstract

Drosophila melanogaster is an emerging model to study different aspects of social interactions. For example, flies avoid areas previously occupied by stressed conspecifics due to an odorant released during stress known as the Drosophila stress odorant (dSO). Through the use of the T-maze apparatus, one can quantify the avoidance of the dSO by responder flies in a very affordable and robust assay. Conditions necessary to obtain a strong performance are presented here. A stressful experience is necessary for the flies to emit dSO, as well as enough emitter flies to cause a robust avoidance response to the presence of dSO. Genetic background, but not their group size, strongly altered the avoidance of the dSO by the responder flies. Canton-S and Elwood display a higher performance in avoiding the dSO than Oregon and Samarkand strains. This behavioral assay will allow identification of mechanisms underlying this social behavior, and the assessment of the influence of genes and environmental conditions on both emission and avoidance of the dSO. Such an assay can be included in batteries of simple diagnostic tests used to identify social deficiencies of mutants or environmental conditions of interest.

Introduction

该方法的目标是很容易量化的果蝇简单的社会行为,独立于求偶和侵略一个新的方面。

社会互动是至关重要的内一个社会的正常发育和健康个体,以及一个社会群体作为一个整体的功能。这些相互作用的高复杂性就必须大的样本大小和一个系统,它允许为行为简化为社会行为的遗传和神经基础仍然知之甚少。 果蝇是可用于识别基因的有力的遗传模型,并社会互动的神经基础。事实上,D.果蝇有复杂的社会行为剧目和社会化的一些直接测量已经完成1-7。不过,这些努力都集中在相对复杂的社会行为,如aggres西伯相互作用3,6,求爱3,8-12的各个方面,以及如何社会经验影响其他行为,如学习,或昼夜节律13-17。此外,许多这些测定依赖于分析蝇基的复杂的交互模式,利用视频跟踪和计算机软件来分析得到的数据的丰度。这样的分析是非常宝贵的,并导致重要的新见解,如在组7苍蝇飞相互作用的动态。一个限制,但是,这些检测到社会大众的交通不便,和基本认同他人的机制的了解有限。换句话说,信号由一个单独的和其识别由另一个发射的基础仍然知之甚少18。

相比之下,苍蝇也表现出一个简单的行为,社交回避,使个人从强调苍蝇发出的信号搬开:该D.黑素ogaster应力加臭剂或DSO 19。在高通量测定法中,此行为可以量化为避免由其他蝇,或社交回避19射出的应力的信号。苍蝇被放置在一个T型迷宫装置和给予的选择,以避免含有DSO的小瓶。使用此测定,CO 2被证明是在DSO的组分必要响应为CO 2解剖19所述的神经电路,和一部分。

这里介绍的社交回避法类似概念在西摩·本泽的实验室开发的简单行为检测的启用几代科研人员解剖复杂的行为20。社交回避的分析,可以进行低成本地使用T型迷宫测定中,允许社会行为的更广泛的研究。例如,使用这种测定法,我们最近证明了孤独症不同的遗传风险在社会B对比效果ehavior检测。突变的候选基因自闭症- neurobeachin 21,22 -目前存在的缺陷无论是在社会空间(23别处描述)和社交回避24。异常的多巴胺信号也提出了自闭症在人类25,26的病因中发挥作用。与此相反,以与neurobeachin所获得的结果,我们发现,社交回避表现是不受增加或多巴胺能细胞减少果蝇囊泡单胺转运(VMAT)的水平,尽管社会空间直接相关,这些水平VMAT 27。neurobeachinVMAT得到的对比结果强调了识别各种形式的反社会行为,并且因此不同的底层神经电路系统调节响应于他人的可能性。

Protocol

1.设备和试剂创造了内部(见材料清单等) 准备果蝇冷麻醉机进行飞行工作。 切的多孔聚乙烯片以覆盖一个小塑料盒(12.7厘米长,10.2厘米宽),一个移液管尖端盒子通常顶盖(12.7厘米长,10.2厘米宽,3.8厘米深)。 装满碎冰的箱子,盖上多孔聚乙烯片材。 准备一个T-迷宫器具;适应先前在细节28-31所描述的装置。 准备描述32苍蝇吸引。 </l…

Representative Results

社交回避试验是一个强大的测试定量果蝇识别一个应力信号(DSO)被其他蝇发射的能力,并因此评估社会互动的一个方面。使用已知作为T迷宫,其具有两个不同的选项之间进行选择呈现苍蝇各种行为测定常用的装置进行测定-左或右19,28-31。在这种情况下,效率在该苍蝇避免DSO是通过计算和比较它们的性能指数(PI)的定量。零P​​I表示50-50分布或没有回避,而100 PI表明,所有的苍?…

Discussion

本协议描述为社会避免检测的详细过程。广-S只会避免在飞行以前一直强调机械小瓶和应答者的性别和数量不影响社交回避的性能。然而,反应的遗传背景有重要的影响。

以下是几个关键的步骤成功完成这个实验:1)实验前总是转移苍蝇2小时,并确保不影响他们的环境; 2)在一天的同一时间进行的实验总是理想地之间Zeitgeber时间光的发病后ZT5(小时)和ZT9减少的变化表现挂?…

Declarações

The authors have nothing to disclose.

Acknowledgements

We thank Rachelle Kanippayoor for her help in identifying the new wild-type strain as being of the melanogaster species. R.W.F, O.F. and A.F.S were responsible for research design; R.W.F, M.N. and O.F. performed the experiments. R.W.F, M.N., O.F. and A.F.S. analyzed the data; R.W.F., I.S.M. and A.F.S. wrote the manuscript.

This work was supported by PSC-CUNY research awards, jointly funded by The Professional Staff Congress and The City University of New York to A.F.S.; by internal funding from Western University to A.F.S. and I.S.M.; by a training support from the National Alliance for Hispanic Health’s Alliance/Merck Ciencia (Science) Hispanic Scholars Program and a University Fellowship from the Yale Graduate School of Arts and Sciences to R.W.F.

Materials

Stereo Zoom Microscope  Nikon   SMZ-645 Any other standard scope for fly handling would work
Small paint brushes  for pushing flies
Porous Polyethylene, 12" x 12" Sheet Flystuff – Genesee 46-100 http://www.flystuff.com/ProductInfo.php?productID=46-100
Porous Plastic sheet for the cold anesthesia box
Mini-Alarm Timer/Stopwatch
 Sharpie pens
Adhesive Tape
Mini vortex Fisher 14-955-151  http://www.fishersci.com/ecomm/servlet/itemdetail
For mechanical agitation of the flies – any vortex would work.
Corning Life Sciences DL No.:352017, Falcon test tube; round bottom; disposable; no closure, 14mL;  17 x 100mm Fisher 14-959-8    http://www.fishersci.com/ecomm/servlet/itemdetail?storeId=10652&langId=-1&catalogId=29104&productId=2771811&distype=0&highlightProductsItemsFlag=Y&fromSearch=1&searchType=PROD&hasPromo=0
These snap in place in the in-house made T-maze and counter-current apparatus (see text)
cotton balls to close the vials after the experiment.
trifold board and white bench cover to provide a white background, and a homogeneous light.
white bench cover
pounding pad any mouse pad works.
large black cloth to cover the counter-current apparatus in phototaxis response.
cool-white light  Home Depot 1000516563 http://www.homedepot.ca/product/illume-26-fluorescent-plug-in-linear/911423
any similar linear light with fluorescent light bulb cool-white at 13-15W would work

Referências

  1. Fry, S. N., Rohrseitz, N., Straw, A. D., Dickinson, M. H. TrackFly: virtual reality for a behavioral system analysis in free-flying fruit flies. J Neurosci Methods. 171, 110-117 (2008).
  2. Slawson, J. B., Kim, E. Z., Griffith, L. C. High-resolution video tracking of locomotion in adult Drosophila melanogaster. J Vis Exp. 24, 1096 (2009).
  3. Dankert, H., Wang, L., Hoopfer, E. D., Anderson, D. J., Perona, P. Automated monitoring and analysis of social behavior in Drosophila. Nat Methods. 6, 297-303 (2009).
  4. Branson, K., Robie, A. A., Bender, J., Perona, P., Dickinson, M. H. High-throughput ethomics in large groups of Drosophila. Nat Methods. 6, 451-457 (2009).
  5. Simon, J. C., Dickinson, M. H. A new chamber for studying the behavior of Drosophila. PLoS One. 5, 8793 (2010).
  6. Wang, L., Dankert, H., Perona, P., Anderson, D. J. Inaugural Article: A common genetic target for environmental and heritable influences on aggressiveness. in Drosophila. Proceedings of the National Academy of Sciences. 105, 5657-5663 (2008).
  7. Schneider, J., Dickinson, M. H., Levine, J. D. Social structures depend on innate determinants and chemosensory processing in Drosophila. Proceedings of the National Academy of Sciences. 2, 17174-17179 (2012).
  8. Miyamoto, T., Amrein, H. Suppression of male courtship by a Drosophila pheromone receptor. Nat Neurosci. 11, 874-876 (2008).
  9. Villella, A., Hall, J. C., Jeffrey, C. H. Chapter 3 Neurogenetics of Courtship and Mating in Drosophila. . Advances in Genetics. 62, 67-184 (2008).
  10. Ejima, A., Griffith, L. C. Courtship Initiation Is Stimulated by Acoustic Signals in Drosophila melanogaster. PLoS ONE. 3, 3246 (2008).
  11. Mery, F., et al. Public Versus Personal Information for Mate Copying in an Invertebrate. Current Biology. 19, 730-734 (2009).
  12. Montell, C. A taste of the Drosophila gustatory receptors. Curr. Opin. Neurobiol. 19, 345-353 (2009).
  13. Billeter, J. -. C., Atallah, J., Krupp, J. J., Millar, J. G., Levine, J. D. Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature. 461, 987-991 (2009).
  14. Krupp, J. J., et al. Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr Biol. 18, 1373-1383 (2008).
  15. Kent, C., Azanchi, R., Smith, B., Formosa, A., Levine, J. D. Social context influences chemical communication in D. melanogaster males. Curr Biol. 18, 1384-1389 (2008).
  16. Levine, J. D., Funes, P., Dowse, H. B., Hall, J. C. Resetting the Circadian Clock by Social Experience in Drosophila melanogaster. Science. 298, 2010-2012 (2002).
  17. Ganguly-Fitzgerald, I., Donlea, J., Shaw, P. J. Waking Experience Affects Sleep Need in Drosophila. Science. 313, 1775-1781 (2006).
  18. Billeter, J. -. C., Levine, J. D. Who is he and what is he to you? Recognition in Drosophila melanogaster. Curr. Opin. Neurobiol. 23, 17-23 (2013).
  19. Suh, G. S., et al. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature. 431, 854-859 (2004).
  20. Bonini, N. A Tribute to Seymour Benzer 1921-2007. 180, 1265-1273 (2008).
  21. Castermans, D., et al. The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism. Journal of Medical Genetics. 40, 352-356 (2003).
  22. Medrihan, L., et al. Neurobeachin, a protein implicated in membrane protein traffic and autism, is required for the formation and functioning of central synapses. J Physiol. 587, 5095-5106 (2009).
  23. Simon, A. F., et al. A simple assay to study social behavior in Drosophila: measurement of social space within a group. Genes Brain Behav. 11, 243-252 (2012).
  24. Venkatesh, T., et al. . Cold Spring Harbor Meeting: From Molecules to Circuit Behavior. , (2013).
  25. Hamilton, P. J., et al. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol Psychiatry. 18, 1315-1323 (2013).
  26. Gadow, K. D., et al. Association of dopamine gene variants, emotion dysregulation and ADHD in autism spectrum disorder. Research in Developmental Disabilities. 35, 1658-1665 (2014).
  27. Fernandez, R. W., Akinleye, A. A., Nurilov, M., Rouzyi, Z., Simon, A. F. . , (2014).
  28. Ali, Y. O., Escala, W., Ruan, K., Zhai, R. G. Assaying Locomotor, Learning, and Memory Deficits in Drosophila Models of Neurodegeneration. J Vis Exp. , 2504 (2011).
  29. Connolly, J. B., Tully, T., Roberts, D. B. . Drosophila: A Practical Approach. 1, 265-317 (1998).
  30. Tully, T., Quinn, W. G. Classical-conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol [A]. 157, 263-277 (1985).
  31. Krashes, M. J., Waddell, S. Drosophila Aversive Olfactory Conditioning. Cold Spring Harbor Protocols. 2011, (2011).
  32. Ejima, A., Griffith, L. C., Zhang, B., Freeman, M. R., Waddell, S. Ch. 30. Drosophila Neurobiology, A Laboratory Manual. , 475-481 (2010).
  33. Benzer, S. Behavioral mutants of Drosophila melanogaster isolated by countercurrent distribution. PNAS. 58, 1112-1119 (1967).
  34. Simon, A. F., Shih, C., Mack, A., Benzer, S. Steroid control of longevity in Drosophila melanogaster. Science. 299, 1407-1410 (2003).
  35. Vaux, D. L. Research methods: Know when your numbers are significant. Nature. 492, 180-181 (2012).
  36. Stowers, L., Logan, D. W. Sexual dimorphism in olfactory signaling. Curr. Opin. Neurobiol. 20, 770-775 (2010).
  37. Simon, A. F., Liang, D. T., Krantz, D. E. Differential decline in behavioral performance of Drosophila melanogaster with age. Mechanisms of Ageing and Development. , 127-647 (2006).
check_url/pt/52011?article_type=t

Play Video

Citar este artigo
Fernandez, R. W., Nurilov, M., Feliciano, O., McDonald, I. S., Simon, A. F. Straightforward Assay for Quantification of Social Avoidance in Drosophila melanogaster. J. Vis. Exp. (94), e52011, doi:10.3791/52011 (2014).

View Video