Summary

へのガイド<em>インビボ</emOptogenetically同定された皮質抑制性介在から>シングル単位記録

Published: November 07, 2014
doi:

Summary

Here we describe our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. Neurons expressing ChR2 are identified by their response to blue light. The method uses standard extracellular recording equipment, and serves as an inexpensive alternative to calcium imaging or visually-guided patching.

Abstract

神経生理学における主要な課題は、大脳皮質に多数の阻害性の細胞型の応答特性および機能を特徴づけることであった。 ここで私たちは、リマと同僚1によって開発された方法を使用して麻酔をかけたマウスの大脳皮質内で識別抑制性介在ニューロンから安定し、十分に単離され、単一ユニット記録を取得するための戦略を共有しています。記録は、特定のニューロンの亜集団にチャネルロドプシン-2(ChR2を)を発現するマウスで行われる。集団のメンバーは、青色光の短いフラッシュに対する反応により同定される。 「PINP」と呼ば、またはニューロン集団の光刺激アシスト識別 – – この技術は、標準的な細胞外記録装置で実現することができる。これは、遺伝的に同定された細胞に細胞外記録を標的とする目的のために、カルシウムイメージングまたは視覚誘導パッチに安価でアクセス可能な代替物として機能することができる。 HERE私たちは毎日の練習方法を最適化するための一連のガイドラインを提供する。我々は、具体的にはパルブアルブミン陽性(PV +)細胞を標的化するための戦略を洗練が、それはそのようなソマトスタチン発現(SOM +)とカルレチニン発現(CR +)介在ニューロンとして、同様に他の介在ニューロンタイプのために働くことを見出した。

Introduction

Characterizing the myriad cell types that comprise the mammalian brain has been a central, but long-elusive goal of neurophysiology. For instance, the properties and function of different inhibitory cell types in the cerebral cortex are topics of great interest but are still relatively unknown. This is in part because conventional blind in vivo recording techniques are limited in their ability to distinguish between different cell types. Extracellular spike width can be used to separate putative parvalbumin-positive inhibitory neurons from excitatory pyramidal cells, but this method is subject to both type I and type II errors2,3. Alternatively, recorded neurons can be filled, recovered, and stained to later confirm their morphological and molecular identity, but this is a pain-staking and time-consuming process. Recently, genetically identified populations of inhibitory interneurons have become accessible by means of calcium imaging or visually guided patch recordings. In these approaches, viral or transgenic expression of a calcium reporter (such as GCaMP) or fluorescent protein (such as GFP) allows identification and characterization of cell types defined by promoter expression. These approaches use 2-photon microscopy, which requires expensive equipment, and are also limited to superficial cortical layers due to the light scattering properties of brain tissue.

Recently, Lima and colleagues1 developed a novel application of optogenetics to target electrophysiological recordings to genetically identified neuronal types in vivo, termed “PINP” – or Photostimulation-assisted Identification of Neuronal Populations. Recordings are performed in mice expressing Channelrhodopsin-2 (ChR2) in specific neuronal subpopulations. Members of the population are identified by their response to a brief flash of blue light. Unlike many other optogenetic applications, the goal is not to manipulate circuit function but simply to identify neurons belonging to a genetically-defined class, which can then be characterized during normal brain function. The technique can be implemented with standard extracellular recording equipment and can therefore serve as an accessible and inexpensive alternative to calcium imaging or visually-guided patching. Here we describe an approach to PINPing specific cell types in the anesthetized auditory cortex, with the expectation that the more general points can be usefully applied in other preparations and brain regions.

In cortex, PINP holds particular promise for investigating the in vivo response properties of inhibitory interneurons. GABAergic interneurons comprise a small, heterogeneous subset of cortical neurons4. Different subtypes, marked by the expression of particular molecular markers, have recently been shown to perform different computational roles in cortical circuits5-9. As genetic tools improve it may eventually be possible to distinguish morphologically- and physiologically-separable types that fall within these broad classes. We here share our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. This strategy was developed specifically for targeting parvalbumin-positive (PV+) cells, but we have found that it works for other interneuron types as well, such as somatostatin-expressing (SOM+) and calretinin-expressing (CR+) interneurons. Although PINPing is conceptually straightforward, it can be surprisingly unyielding in practice. We learned a number of tips and tricks through trial-and-error that may be useful to others attempting the method.

Protocol

注:オレゴン大学の動物実験委員会によって承認され、次のプロトコルが健康ガイドラインの国立研究所によるものである。 1.急性手術腹腔内(ip)注射した( 表1)を介して、ケタミン-メデトミジンカクテルで動物を麻酔。 注:これらの実験で使用したマウスは、ドライバ·ライン(; SST-iCre12、SOMの+; CrをiCre12、CR + Pvalb-iCre11、PV +)を介在するC…

Representative Results

ここでは、「リマら 1。 表1の詳細を示唆麻酔カクテル、ケタミン-メデトミジン-アセプロマジンを(によって開発された光遺伝学的方法を使用して、麻酔したマウス皮質で遺伝的に分類された抑制性介在からシングルユニット記録を取得するための我々の戦略を共有するKMA」)。 図1は、4図3は、Arduinoのマイクロコントローラと光出力をゲーティング?…

Discussion

PINPは、概念的には簡単であるが、それは実際に挑戦することができます。成功の主要な決定は、電極の選択である。電気リスニング半径は重要なパラメータである。それは1つがそれに応じて前進速度を調整できるように、先端が、少し離れChR2を+細胞からまだあるときに光誘発スパイクを検出するのに十分な大きさでなければならない。同時に、それは優れた単体分離を可能にするために?…

Declarações

The authors have nothing to disclose.

Acknowledgements

This work was funded by the Whitehall Foundation and the NIH. We thank Clifford Dax (University of Oregon Technical Support Administration) for his help and expertise in designing a circuit for light delivery.

Materials

Name of Material/Equipment Company Product/Stock Number Comments/Description
ChR2-EYFP Line Jackson Colonies 12569
Pvalb-iCre (PV) Line Jackson Colonies 8069
Sst-iCre (SOM) Line Jackson Colonies 13044
Cr-iCre (CR) Line Jackson Colonies 10774
Agarose Sigma-Aldrich A9793 Type III-A, High EEO
Micro Point (dural hook) FST 10066-15
Surgical Scissors FST 14084-09
Scalpel FST 10003-12 (handle), 10011-00 (blades)
Puralube Ophthalmic Ointment Foster & Smith 9N-76855
Homeothermic Blanket Harvard Apparatus 507220F
Tungsten Microelectrodes A-M Systems 577200 12 MΩ AC resistance, 127 μm diameter, 12° tapered tip, epoxy-coated
Capillary Glass Tubing Warner Instruments G150TF-3
Heat Shrink Tubing DigiKey A332B-4-ND
Zapit Accelerator DVA SKU ZA/ZAA Use with standard Super Glue. 
Microelectrode AC Amplifier 1800 AM Systems 700000
MP-285 Motorized Micromanipulator Sutter MP-285
4-channel Digital Oscilloscopes Tektronix TDS2000C
Powered Speakers Harman Model JBL Duet
Manual Manipulator Scientifica LBM-7
800 µm Fiber Optic Patch Cable ThorLabs FC/PC BFL37-800
Power Meter ThorLabs PM100D (Power Meter), S121C (Standard Power Sensor)
475 nm Cree XLamp XP-E DigiKey XPEBLU-L1-R250-00Y01DKR-ND LED power and efficiency are continually increasing, so we recommend checking for the latest products (www.cree.com).
Arduino UNO DigiKey 1050-1024-ND

Referências

  1. Lima, S. Q., Hromadka, T., Znamenskiy, P., Zador, A. M. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One. 4, (2009).
  2. Moore, A. K., Wehr, M. Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. J Neurosci. 33, 13713-13723 (2013).
  3. Merchant, H., de Lafuente, V., Pena-Ortega, F., Larriva-Sahd, J. Functional impact of interneuronal inhibition in the cerebral cortex of behaving animals. Prog Neurobiol. 99, 163-178 (2012).
  4. Markram, H., et al. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci. 5, 793-807 (2004).
  5. Atallah, B. V., Bruns, W., Carandini, M., Scanziani, M. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron. 73, 159-170 (2012).
  6. Wilson, N. R., Runyan, C. A., Wang, F. L., Sur, M. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature. 488, 343-348 (2012).
  7. Letzkus, J. J., et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature. 480, 331-335 (2011).
  8. Pi, H. J., et al. Cortical interneurons that specialize in disinhibitory control. Nature. 503, 521-524 (2013).
  9. Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z. J., Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature. 490, 226-231 (2012).
  10. Madisen, L., et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci. 15, 793-802 (2012).
  11. Hippenmeyer, S., et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, 159 (2005).
  12. Taniguchi, H., et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron. 71, 995-1013 (2011).
  13. Christianson, G. B., Sahani, M., Linden, J. F. Depth-dependent temporal response properties in core auditory cortex. J Neurosci. 31, 12837-12848 (2011).
  14. Povysheva, N. V., Zaitsev, A. V., Gonzalez-Burgos, G., Lewis, D. A. Electrophysiological heterogeneity of fast-spiking interneurons: chandelier versus basket cells. PLoS One. 8, 70553 (2013).

Play Video

Citar este artigo
Moore, A. K., Wehr, M. A Guide to In vivo Single-unit Recording from Optogenetically Identified Cortical Inhibitory Interneurons. J. Vis. Exp. (93), e51757, doi:10.3791/51757 (2014).

View Video