Dopaminergic neurons play a vital regulatory role in the brain. Their loss is associated with Parkinson’s disease. In this video, we show how to generate primary cultures of central dopaminergic neurons from embryonic mouse mesencephalon. Such cultures are useful to study the extreme vulnerability of these neurons to various stresses.
Neuroni dopaminergici rappresentano meno dell'1% del numero totale di neuroni nel cervello. Questa bassa quantità di neuroni regola importanti funzioni cerebrali come il controllo motorio, la motivazione, e la memoria di lavoro. Neuroni dopaminergici nigrostriatali degenerano selettivamente nella malattia di Parkinson (PD). Questa perdita neuronale progressiva è inequivocabilmente associato con i motori sintomi della patologia (bradicinesia, tremore a riposo, e rigidità muscolare). L'agente principale responsabile della degenerazione dei neuroni dopaminergici è ancora sconosciuta. Tuttavia, questi neuroni sembrano essere estremamente vulnerabile in condizioni diverse. Colture primarie costituiscono uno dei modelli più importanti per studiare le proprietà e le caratteristiche dei neuroni dopaminergici. Queste culture possono essere presentate a diversi agenti di stress che imitano PD patologia e ai composti neuroprotettivi al fine di fermare o rallentare la degenerazione neuronale. I numerosi modelli murini transgenici di PD che sono stati generated nel corso dell'ultimo decennio ulteriormente aumentato l'interesse dei ricercatori per le culture neuronali dopaminergiche. Qui, il protocollo video si concentra sulla delicata dissezione dei cervelli embrionali di topo. Escissione precisa del mesencefalo ventrale è fondamentale per ottenere colture neuronali sufficientemente ricchi di cellule dopaminergiche per consentire studi successivi. Questo protocollo può essere realizzato con topi transgenici embrionali ed è adatto per immunofluorescenza, PCR quantitativa, secondo la quantificazione messaggero, o neuronale valutazione morte / sopravvivenza.
La dopamina, uno dei neurotrasmettitori cerebrali essenziali 1,2, viene rilasciato principalmente dal mesencefalo dopaminergici (DA) neuroni. La maggior parte dei neuroni dopaminergici risiedono nella parte ventrale del mesencefalo 2-6. Schematicamente, mesencefalo neuroni DA possono essere divise in tre anatomicamente e funzionalmente distinti sistemi di proiezione: mesostriatal, mesolimbico, e percorsi mesocorticali 2,5. Il sistema nigrostriatale è coinvolta nel comportamento motorio, i percorsi mesolimbico svolgono un ruolo importante nel rinforzo, la motivazione e l'apprendimento, mentre le vie dopaminergiche che proiettano alla corteccia prefrontale sono implicati nella cognizione 2.
Neuroni DA sono coinvolti in diverse patologie neurologiche umane come la schizofrenia, deficit di attenzione, disturbi iper attività, e la malattia di Parkinson (PD) 2,4. PD è caratterizzata da una degenerazione progressiva e selettiva di neuroni DA collegamento substantia nigrapars compacta (SNC) al corpo striato. La perdita di Nigro-striatale DA neuroni provoca una grave deplezione di dopamina nello striato che è responsabile dei sintomi motori della malattia di Parkinson (bradicinesia, tremore a riposo, rigidità e) 7. La causa iniziale del PD idiopatica non è stata stabilita e gli attuali trattamenti sono solo sintomatica, che mira a ripristinare il livello di dopamina nello striato. Il farmaco più prescritto è L-Dopa (levodopa), il precursore naturale della dopamina. Anche se la somministrazione di Levodopa compensa la perdita di dopamina per un certo tempo, le complicanze motorie si verificano dopo i trattamenti a lungo termine (discinesia e stati on / off) 8,9.
La ricerca sui neuroni dopaminergici e PD è in costante progressione e intensi sforzi sono stati fatti per sviluppare trattamenti basati sul trapianto di cellule, la terapia genica, o agenti neuroprotettivi 10,11. Tuttavia, una questione importante rimane non chiarita: qual è la causa della estrema vulnerabilità di neuroni DA? Parte della risposta può essere trovata nella attività dei neuroni DA. Una riduzione dell'attività elettrica e della eccitabilità di neuroni dopaminergici sembra aumentare la loro propensione a degenerare 12. Tuttavia, la complessità del PD patogenesi richiede ulteriori studi per identificare i meccanismi coinvolti nella degenerazione dei neuroni DA 13-15.
Colture primarie sono particolarmente rilevanti per studiare le proprietà dei neuroni DA 16-19 e di sfidare questi neuroni a varie sollecitazioni per la valutazione degli agenti neuroprotettivi 20-24. Modelli di coltura Rat sono più spesso utilizzati, come la dissezione di ratto dell'embrione mesencefalo è più facile, in confronto con il mouse, e una maggiore quantità di neuroni possono essere ottenuti nel ratto. Tuttavia, la generazione di modelli transgenici murini di malattia 25 ha notevolmente aumentato l'interesse della comunità neuroscienziato per colture primarie dal mouse 26-29. Anche se le culture prepared da animali neonati può essere utilizzato, è meglio prepararli da embrioni allo stadio post-mitotico (E13.5 per i neuroni mesencefalo), quando i neuroni hanno conservato la loro capacità di differenziarsi. Il protocollo che segue presenta isolate mesencefalo neuroni in coltura primaria da embrioni di topo (E13.5), che sono i più difficili da preparare. In particolare, forniamo un protocollo con terreno privo di siero cultura per una migliore riproducibilità. Le due fasi più critiche in preparazione culturale (dissezione e dissociazione meccanica) saranno accuratamente dettagliati nel video associato.
Questo protocollo presenta le procedure ei reagenti necessari per preparare una coltura primaria di neuroni mesencefaliche dal mouse embrionale e la procedura di immunofluorescenza per rilevare neuroni dopaminergici. Fasi critiche della procedura sono la dissezione degli embrioni e la dissociazione meccanica dei frammenti cerebrali raccolte. Strumenti di dissezione di alta qualità aiuta a padroneggiare la tecnica di dissezione. Neuroni DA costituiscono una piccola percentuale di mesencefalo. Pertanto, raccogliendo la p…
The authors have nothing to disclose.
Supported by grants from CNRS and INSERM. PM acknowledges support from the Fondation pour la Recherche Médicale en France (Equipe FRM 2009). SC acknowledges support from the Fondation de France.
Fetal Bovine Serum | Lonza | 14-801F | |
DMEM 4.5g/L Glucose with L-Glutamine | Lonza | BE12-604F | |
0.05% Trypsin-EDTA (1X), Phenol Red | Life Technologies | 25300-054 | |
Penicillin-Streptomycin (10,000 U/mL) | Life Technologies | 15140122 | |
L-glutamine, 200 mM Solution | Life Technologies | 25030123 | |
Dulbecco’s Phosphate Buffered Saline | Sigma-Aldrich | D8537 | |
Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham | Sigma-Aldrich | D0547 | Powder |
Laminin – 1 mg/mL in Tris buffered NaCl | Sigma-Aldrich | L2020 | |
Poly-L-Ornithine hydrobromide | Sigma-Aldrich | P3655 | |
Insulin from porcine pancreas | Sigma-Aldrich | I5523 | |
apo-Transferrin human | Sigma-Aldrich | T1147 | |
Putrescine dihydrochloride | Sigma-Aldrich | P5780 | |
Progesterone | Sigma-Aldrich | P8783 | |
Sodium selenite | Sigma-Aldrich | S5261 | |
HEPES | Sigma-Aldrich | H4034 | |
Glycine | Sigma-Aldrich | G7126 | Stock solution 1M in water |
Gelatin | Sigma-Aldrich | G9391 | Stock solution 2% (w/v) in water |
Triton X-100 | Sigma-Aldrich | T8532 | |
Paraformaldehyde 16% in water | Electron Microscopy Sciences | RT 15710-S | |
Sodium hydrogen carbonate (NaHCO3) | Merck Millipore | 106329 | |
D(+)-Glucose, Monohydrate | Merck Millipore | 4074-2 | |
Hydrochloric acid – c(HCl) = 1 mol/l (1 N) Titripur | Merck Millipore | 109057 | |
Sterile water – Aqua B. Braun | Braun | ||
Ethanol absolute NORMAPUR analytical reagent | VWR | 20821.321 | |
Sterile Petri Dishes | VWR | 82050-566 | |
Pasteur pipettes plain glass – Wilhem Ulbrich GdbR. | VWR | 612-2297 | |
Counting chamber Malassez | VWR | 631-0975 | |
Serum Acrodisc Syringe Filter with Supor Membrane, Sterile, GF/0.2 µm, 37 mm | PALL Life science | 4525 | |
Surgical Scissors – Straight, sharp-sharp, 14.5 cm long | Fine Science Tools | 14002-14 | To open the abdominal wall |
Scissors – Straight, pointed, delicate, 10 cm long | MORIA | 4877A | To open the uterine wall |
Forceps – Curved, usual, serrated jaws 1 mm | MORIA | 2183 | To manipulate embryos |
Vannas Scissors – Curved, pointed, 7 mm blades | MORIA | MC50 | To take out the mesencephalon |
Ultra Fine Forceps – Curved, delicate, 13 cm long | MORIA | 9987 | To remove meninges |
BD BioCoat Poly-D-Lysine 24-well Multiwell Plates | BD Bioscience | 356414 | |
BD Falcon 12-well Cell Culture Plate, flat-bottom with lid | BD Bioscience | 353043 | |
SuperFrost Microscope Slides, Ground edges 90º | MENZEL-GLÄSER | AG00008032E | |
Precision cover glasses thickness No. 1.5H circular 18 mm Ø | MARIENFELD | 117580 | |
Polyclonal Rabbit Anti-Microtubule-Associated Protein 2 (MAP2) Antibody | Chemicon Millipore | AB5622 | 1/200 |
Monoclonal Mouse Anti-Glutamate Decarboxylase (GAD67) Antibody, clone 1G10.2 | Chemicon Millipore | MAB5406 | 1/400 |
Monoclonal Rat Anti-Dopamine Transporter (DAT) Antibody, clone DAT-Nt | Chemicon Millipore | MAB369 | 1/500 |
Monoclonal Mouse Anti-5-HT Antibody | 1/8,000 – Generous gift from Yves Charnay (Swizerland, Yves.Charnay@hcuge.ch) | ||
Goat Serum, New Zealand Origin | Life Technologies | 16210-064 | |
Alexa Fluor 405 Goat Anti-Rabbit IgG (H+L) Antibody | Life Technologies | A-31556 | 1/200 |
Alexa Fluor 488 Goat Anti-Mouse IgG (H+L) Antibody | Life Technologies | A-11001 | 1/1000 |
Alexa Fluor 594 Goat Anti-Rat IgG (H+L) Antibody | Life Technologies | A-11007 | 1/1000 |
VECTASHIELD HardSet Mounting Medium | Vector Laboratories | H-1400 | |
Stereomicroscope | Carl Zeiss microscopy | Stemi-2000C | |
Bunsen Burner FIREBOY | VWR | 451-0136 |