Glycosome dynamics in African trypanosomes are difficult to study by traditional cell biology techniques such as electron and fluorescence microscopy. As a means of observing dynamic organelle behavior, a fluorescent-organelle reporter system has been used in conjunction with flow cytometry to monitor real-time glycosome dynamics in live parasites.
Trypanosoma brucei est un parasite qui provoque kinétoplastide la trypanosomiase humaine africaine (THA) ou maladie du sommeil, et une maladie débilitante, nagana, chez les bovins 1. Les parasite alterne entre la circulation sanguine de l'hôte mammifère et le vecteur de mouche tsé-tsé. La composition de nombreux organites cellulaires change en réponse à ces différentes conditions extracellulaires 5.2.
Glycosomes sont peroxysomes hautement spécialisées dans laquelle beaucoup des enzymes impliquées dans la glycolyse sont compartimentés. Changements dans la composition glycosome d'une manière intellectuelle et ICPE 4-11. Actuellement, les techniques les plus couramment utilisées pour étudier la dynamique glycosome sont la microscopie électronique et fluorescence; techniques qui coûtent cher, de temps et de main-d'œuvre, et pas facilement adapté à l'analyse à haut débit.
Pour surmonter ces limitations, un système rapporteur fluorescent dans glycosomece qui a renforcé la protéine fluorescente jaune (EYFP) est fusionnée à une séquence de ciblage de peroxysome (PTS2), qui dirige la protéine de fusion à glycosomes 12, a été établi. Lors de l'importation de la protéine de fusion PTS2eYFP, glycosomes deviennent fluorescentes. la dégradation des organites et le recyclage entraîne la perte de la fluorescence qui peut être mesuré par cytométrie de flux. Un grand nombre de cellules (5000 cellules / sec) peuvent être analysées en temps réel avec une préparation de l'échantillon tel que la fixation et le montage. Ce procédé offre un moyen rapide de détection de changements dans la composition d'un organite, en réponse aux fluctuations des conditions ambiantes.
Trypanosoma brucei cause la maladie du sommeil en Afrique chez les humains et une maladie débilitante, nagana, chez les bovins. Médicaments utilisés dans le traitement de ces maladies sont vétustes et très toxique, les vaccins ne sont pas disponibles, et le potentiel pour le développement de la résistance aux médicaments nécessitent la recherche de nouvelles cibles de médicaments 1.
Au cours de son cycle de vie, T. brucei, alterne entre un insecte vecteur et hôte mammifère; deux hôtes qui présentent des environnements très différents dans lesquels le parasite doit survivre. Un certain nombre de changements métaboliques et morphologiques se produisent comme le parasite est exposé à des conditions environnementales différentes. Certains des changements les plus importants sont observés dans microbodies spécifiques parasites seule membrane délimitée, appelé glycosomes 13.
Les niveaux de glucose sont relativement élevés (~ 5 mM) dans le sang et la circulation sanguine des parasites (BSF) génèrent ATP exclusivement par wh de la glycolysemétabolisme mitochondrial ile est réprimée 14. Contrairement à d'autres eucaryotes dans laquelle se produit la glycolyse dans le cytoplasme, T. brucei compartimente la plupart des enzymes de la glycolyse dans glycosomes 14,15. Les parasites sont prises par la mouche tsé-tsé au cours d'un repas de sang et connaissent une baisse de la glycémie, qui tombe à des niveaux indétectables dans les 15 minutes d'être ingéré par la mouche. Le métabolisme de l'insecte, de la forme procyclique (PCF), parasites est plus souple et de glucose, ainsi que des acides aminés tels que la proline, peuvent être utilisés dans la synthèse de l'ATP de 16 à 18. Études protéomiques comparatives révèlent les changements du cycle de vie dépendent en glycosomale et protéines mitochondriales avec des protéines glycolytiques augmentation dans la circulation sanguine des parasites et des protéines mitochondriales impliquées dans le cycle de Krebs et la chaîne respiratoire 13,19. Alors que de nombreuses études ont porté sur les différences entre BSF et glycosomes PCF, on sait peu sur les changements dans glycosomes PCF qui se produisent en réponse à envchangements ironmental.
Dans le gros intestin de la mouche, les niveaux de glucose sont faibles à des augmentations transitoires au cours d'une alimentation 20. Dans la plupart des études in vitro, les parasites PCF sont cultivées dans des milieux contenant du glucose. Cependant, des études récentes ont démontré que les changements du métabolisme PCF significativement en réponse au glucose disponibilité 17. En l'absence de glucose, la proline et la proline absorption augmentation de l'activité déshydrogénase 18. Ce changement dans le métabolisme mitochondrial est probablement accompagnée par un changement de la composition et de la morphologie de glycosome, cependant, ceci n'a pas été directement évalué.
Microscopie électronique et de fluorescence sont des techniques courantes utilisées pour étudier la dynamique de glycosome en T. brucei 2,21-24. Ces protocoles sont le temps et de main-d'œuvre, coûteux et difficiles à adapter aux études en temps réel et des protocoles à haut débit. Pour surmonter cette limitation, un système rapporteur fluorescent u-organitesed pour étudier organites dans les systèmes de mammifères et de levure a été modifié pour une utilisation dans T. brucei 12.
Systèmes rapporteurs fluorescents-organelles ont été largement utilisés dans des eucaryotes supérieurs tels que des levures, des plantes, des cellules de mammifères et de 25 à 27. Dans de tels systèmes, une protéine fluorescente est fusionnée à une séquence d'acides aminés qui cible la protéine à des organites spécifiques. La dégradation ou la synthèse des protéines cibles est mesurée par fluorescence et des changements dans la composition des organites sont reflétés par des changements dans la fluorescence de la cellule.
Lorsque le cadre du renforcement de la protéine fluorescente jaune (EYFP) de lecture ouvert est fusionnée à une séquence de type II de ciblage des peroxysomes (PTS2) 12, la protéine PTS2eYFP est importé dans glycosomes matures, importation compétent et de la fluorescence peut être contrôlé par cytométrie de flux. Les variations de composition glycosome se traduisent par des changements dans la fluorescence cellulaire. Ce système peut aider à résolVing les mécanismes qui régulent les changements induits par l'environnement dans glycosome composition.
Ce manuscrit décrit la génération d'un système glycosome rapporteur dans parasites PCF en collaboration avec la cytométrie de flux pour suivre la dynamique de glycosome en temps réel à des parasites vivants et fournit un exemple de la façon dont il a été utilisé pour suivre l'évolution de glycosome composition en réponse à des environnements différents. En résumé, glycosome composition est influencée par les concentrations de glucose extracellulaire et le passage des cultures en phase logarithmique dans un milieu frais déclenche des changements dans glycosome composition. Ce système peut être modifié pour étudier le comportement dynamique des autres organites dans les trypanosomes et les autres parasites.
Glycosomes sont des organites essentiels, dynamiques, spécifiques du parasite. Les processus qui régissent la biogenèse, la maintenance, la prolifération et le remodelage de ces organites sont probablement des cibles de médicaments qui pourraient être exploitées à des fins thérapeutiques. Malgré potentiellement forte abondance de ces cibles de médicaments, le domaine de la glycosome biogenèse a pris du retard l'étude des processus similaires dans d'autres organismes, principalement en raison de l…
The authors have nothing to disclose.
This work was funded by the Creative Inquiry Program for Undergraduate Research and the Calhoun Honors College at Clemson University.
Adenosine | Avocado Research Chemicals Ltd | A10781 | SDM79 Ingredient |
L-Alanine | Avocado Research Chemicals Ltd | A15804 | SDM79 Ingredient |
L-arginine | CalBiochem | 1820 | SDM79 Ingredient |
p-aminobenzoic acid | ICN Biomedicals | 102569 | SDM79 Ingredient |
Basal Medium Eagle Vitamin Solution (100X) | Sigma | B6891 | SDM79 Ingredient |
Biotin | Fisher | BP232-1 | SDM79 Ingredient |
Calcium Chloride | VWR | BDH0224 | Cytomix |
EDTA | Fisher | S311-100 | Cytomix ingredient |
EZNA Gel Extraction kit | Omega Biotek | D2500-01 | DNA purifiation |
Research grade Serum | Fisher | 03-600-511 | SDM79 Ingredient |
Folic acid | ICN Biomedicals | 101725 | SDM79 Ingredient |
Glucosamine HCl | ICN Biomedicals | 194671 | SDM79 Ingredient |
Glucose | GIBCO | 15023-021 | SDM79 Ingredient |
L-glutamine | CalBiochem | 3520 | SDM79 Ingredient |
Glycerol | Acros Organics | Ac15892-0010 | Freezing media |
Graces insect cell media powder | GIBCO | 11300-043 | SDM79 Ingredient |
Hemin | MP Biomedicals | 194025 | SDM79 Ingredient |
Guanosine | Avocado Research Chemicals Ltd | A11328 | SDM79 Ingredient |
HEPES | MP Biomedicals | 194025 | SDM79 Ingredient |
Magnesium Chloride | Fisher | BP214-500 | Cytomix ingredient |
L-methionine | Fisher | BP388-100 | SDM79 Ingredient |
MEM Amino Acids (50X) | Cellgro | 25-030-CI | SDM79 Ingredient |
NEAA Mixture (100X) | Lonza | 13-114E | SDM79 Ingredient |
Minimal Essential Medium (1X) with L-glutamine | Cellgro | 10-010-CM | SDM79 Ingredient |
MOPS | Fisher | BP308-500 | SDM79 Ingredient |
Sodium Biocarbonate | Fisher | S233-500 | SDM79 Ingredient |
Penicillin-Streptomycin Solution | Cellgro | 30-002-CI | SDM79 Ingredient |
L-phenylalanine | ICN Biomedicals | 102623 | SDM79 Ingredient |
Potassium Chloride | Fisher | P217-500 | Cytomix ingredient |
Potassium Phosphate Dibasic Anhydrous | Fisheer | P290-212 | Cytomix ingredient |
L-proline | Fisher | BP392-100 | SDM79 Ingredient |
L-serine | Acros Organics | 56-45-1 | SDM79 Ingredient |
Pyruvic acid, sodium salt | Acros Organics | 113-24-6 | SDM79 Ingredient |
L-taurine | TCI America | A0295 | SDM79 Ingredient |
L-threonine | Acros Organics | 72-19-5 | SDM79 Ingredient |
L-tyrosine | ICN Biomedicals | 103183 | SDM79 Ingredient |
E.Z.N.A.Cycle Pure kit | Omega Biotek | D6492-02 | DNA purification |
Binding buffer | Omega Biotek | PDR041 | DNA purification |
SPW wash buffer | Omega Biotek | PDR045 | DNA purification |
Gene Pulser Xcell | Biorad | 165-2660 | Trypanosome transformation |
4 mm electroporation cuvettes | VWR | Trypanosome transformation |