Summary

発生中のマウス胚性皮質における有糸分裂のライブイメージング

Published: June 04, 2014
doi:

Summary

神経前駆有糸分裂は、神経新生の重要なパラメータである。神経前駆糸分裂の我々の理解の多くは、固定された組織の分析に基づいている。胚性脳スライス内のライブイメージングは​​、制御された環境で、高い時間·空間分解能で有糸分裂を評価するための汎用的な手法である。

Abstract

短期間であるが、有糸分裂は、脳を含む臓器の開発のための基本的な複雑で動的な多段階プロセスである。大脳皮質では、神経前駆細胞の異常な有糸分裂は、脳の大きさと機能の欠陥を引き起こす可能性があります。したがって、神経前駆有糸分裂のメカニズムを理解するためのツールのための重要な必要性がある。げっ歯類における皮質の開発は、このプロセスを研究するための優れたモデルです。神経前駆糸分裂は、一般的に固定された脳切片で検討されている。このプロトコルは、具体的にex vivoでの胚の脳切片における有糸分裂のライブイメージングのためのアプローチを説明します。脳の抽出、埋め込む脳、脳スライス、スライスの染色および培養し、タイムラプスイメージングのビブラトーム切片を:私たちは、これは、この手順のための重要なステップを説明します。次に、有糸分裂のポスト取込み分析を実行する方法を詳細に示し、説明する。我々は、代表的な結果のFRを含みOMこのアッセイは、生体色素Syto11、トランスジェニックマウス(ヒストンH2B-EGFPおよびセントリン-EGFP)を使用して、 子宮内電気穿孔(mCherry-α-チューブリン) あった。我々は、この手順では、最良の最適化することができるか、それが有糸分裂の遺伝的調節の研究のために変更する方法を説明します。脳スライスにおける有糸分裂のライブイメージングは​​、制御された環境で、年齢、解剖学および遺伝的摂動の影響を評価するために、高い時間的·空間分解能で大量のデータを生成するために、柔軟なアプローチである。したがって、このプロトコルは、神経前駆糸分裂の分析のための既存のツールを補完する。

Introduction

このプロトコルの全体的な目標は、胚の脳スライスの神経前駆細胞の有糸分裂のライブイメージングを実行する方法を説明することである。培養液中の脳スライスのライブイメージングを使用して、このプロトコルは、 生体内の設定に非常に近い環境で、神経前駆細胞の有糸分裂を複数の側面を分析するための簡単な方法を提供する。なお) 子宮内エレクトロポレーション用い1-5操作された突然変異動物および/ ​​または脳の脳に適用することができる。この技術は、単に培養培地に薬剤を添加することによって、神経前駆細胞」は、有糸分裂に薬理学的物質の効果を試験することも理想的である。要するに、この記事では、神経新生を研究したものと技術的に困難なプロトコルにアクセスできるようになります。

神経発生時には、明確な神経前駆細胞集団は、最終的には6-8新皮質大人の6皮質層に寄与する神経細胞を生成するために、正確な部門を経験。神経上皮(NE)細胞は自己複製に対称的に分割し、早けれ皮質開発では、神経前駆プールが展開されます。 NEの細胞は、その後放射状グリア細胞(RGCは)に変換。当初、RGCを、2つの新しいのRGCを生成するために対称的に分割し、ただし、神経発生の大部分の間に、分裂のRGCは「メインモードは非対称である。非対称分裂では、1 RGCは、新たなRGCいずれか有糸分裂後のニューロン、またはより専門的な前駆細胞(いずれか短い神経前駆(SNP)、外側放射状グリア(ORG)、または中間前駆細胞(INP)を生じさせる2,3,7,9。INPS、SNPを、そしてORGSは、サブ心室、心室の神経細胞を生成することができ、かつ皮質の基底領域がそれぞれあるので、前駆細胞の細胞分裂は、神経細胞を生成するための基本的なプロセスであり、新皮質。

多くの研究は、特定の有糸分裂のRGCの特性と娘細胞の運命の間の相関関係を指摘している。ハイダルおよび高橋RGC分裂期間および神経発生が進行するにつれて、細胞周期の長さの増加は、発見が追跡中の研究10-13をエコーすることを示した。多くの研究は、心室への有糸分裂紡錘体の向きが3,10,14-16それぞれ、脳内で生成された子孫の場所ニューロンのタイプを含む神経発生およびcorticogenesisの態様を、影響することを示唆している。劈開面方位が直接細胞の運命に影響するかどうかは議論の余地があるが、結論は、この有糸分裂のパラメータに影響を与え、神経発生のまま。さらに、有糸分裂の重要性を強調することは、有糸分裂のメカニズムに関与する多くの遺伝子が神経発生のために、適切な脳の発達に重要である17〜20という観察である。

有糸分裂は、動的なプロセスであり、まだ今日までに、神経前駆有糸分裂を詳述するほとんどの研究は、 インビトロでの細胞培養を介して固定された組織切片の分析または神経前駆細胞の画像化を利用する。このように、有糸分裂を評価するための主流の方法は、このプロセスのスナップショットを提供し、細胞が組織内でどのように動作するかを明らかにすることができない。神経前駆有糸分裂のライブイメージングは​​ますます神経前駆機能を理解するための重要なツールとなっています。例については、これらの参照を参照してください4,8,10,21-25。いくつかの優れたプロトコルは、脳スライス26,27の製造およびイメージングのために公開されている。しかしこれまでに、有糸分裂のイメージングおよび分析のための総合的なプロトコルは、ビデオで説明も証明されていない。

この手法は、脳切片の固定分析に比べていくつかの重要な利点を提供しています。脳スライスの経時的分析は、柔軟な方法で分析することができるかなり多くのデータ点を生成することができる。まず、データは、数分または数時間にわたって個々の時点で収集される。一つは、(静的なモンタージュを作成するために)個々の時点を分析することができるか、ムービーに異なる時点を組み合わせることができます。第二に、スライスの共焦点イメージングは​​、脳スライス内の別のZのセクションでデータを生成することができる。その結果、個々の部分を分析することができる。あるいは、個々のセクションのスタックは、最大強度投影中に組み合わせることができる。第三に、分析は、細胞が隣接細胞と構造体と比較して分割の仕方が明らかに、組織のコンテキストで実行されます。第四に、それは、有糸分裂の欠陥のいくつかの証拠を示す突然変異体の分析に理想的に適している。一緒にこのプロトコルは、独自の研究室で神経前駆有糸分裂のライブイメージングを実施したい研究者を支援するための重要なステップを明確にするのに役立ちます。

Protocol

メディアの1。作製(図1、ステップ1) スライス培養培地スライス培養培地25mlをウェル当たり2スライスを5ガラスボトムディッシュを調製するのに十分である。 50ミリリットルコニカルチューブに、100×N2液250μLおよびビタミンA 22.5ミリリットルの容積にDMEM/F12を追加することなく、50倍のB27溶液500μlを加える。 フィルタは、ソリューションを殺菌し、その後、熱不?…

Representative Results

このアッセイの成功と1のライブイメージングセッション中に複数の有糸分裂細胞の観察は、主整合性や買収が行われたスライスの解剖学的なレベルの両方に依存します。以下に説明するように、スライスの解剖学的レベルが重要な因子であり、図3Aは吻側-尾側を示し、内側-外側我々は、最も成功している場所。このテーマの追加の議論についてはNoctor 26を参照してくだ?…

Discussion

我々が記載したプロトコルの主な利点は、それが神経前駆細胞の有糸分裂の動的な時間分解能を提供することである。典型的には、発達中の脳における有糸分裂を可視化するためのアッセイは、固定組織切片の免疫蛍光を用いて行われる。しかし、このアプローチは、1つの時点での有糸分裂のスナップショットを提供する。

脳スライス内の有糸分裂を画像化するための?…

Declarações

The authors have nothing to disclose.

Acknowledgements

著者らは、NINDS / NIH、R00〜NS064197およびNINDS / NIH、R01NS083897(DLSの両方)からの資金を認める。

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
100X N2 Life technologies 17502048 for culture medium
50X B27 without vitamin A Life technologies 12587010 for culture medium
DMEM/F12 Life technologies 11320033 for culture medium
Heat-inactivated horse serum Sigma Aldrich H1138-500ml for culture medium
Heat-inactivated calf serum Sigma Aldrich F4135-500ML for culture medium
FGF R&D Sytems 3139-FB-025 for culture medium
EGF for culture medium
10X HBSS Life technologies 14065-056 for the dissection of the embryos
Hepes Free Acid Sigma Aldrich  H4034 dilute to 1M (pH7.4)
2.5M D-Glucose Sigma Aldrich G8769 for the dissection of the embryos
0.9M NaHC03 Life technologies 25080-094 for the dissection of the embryos
low-melting agarose Fisher  BP165-25 for generating slices
Loctite 404 glue Loctite 404 46551 keep at 4˚C
syto11 Life technologies S7573 Make 5µl aliquots
3 mg/ml collagen type I  Life technologies A1048301 for culturing slices
glass bottom dish MatTek P35G-1.5-14-C for culturing slices
petri dishes for dissection of the embryos
digital thermometer to measure the temperature of the agarose
spatula to transfer brains
paintbrush alternative to transfer brains
vibratome Leica VT1000s for generating slices
dissecting microscope dissecting out embryos
imaging microscope A confocal microscope is required, it needs to be equipped with an incubation chamber

Referências

  1. Gal, J. S., et al. Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci. 26, 1045-1056 (2006).
  2. Stancik, E. K., Navarro-Quiroga, I., Sellke, R., Haydar, T. F. Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. Journal of Neuroscience. 30, 7028-7036 (2010).
  3. Konno, D., et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol. 10, 93-101 (2008).
  4. LoTurco, J. J., Manent, J. -. B., Sidiqi, F. New and improved tools for in utero electroporation studies of developing cerebral cortex. Cereb Cortex. 19 Suppl 1, (2009).
  5. Shimogori, T., Ogawa, M. Gene application with in utero electroporation in mouse embryonic brain. Dev Growth Differ. 50, 499-506 (2008).
  6. Lui, J. H., Hansen, D. V., Kriegstein, A. R. Development and evolution of the human neocortex. Cell. 146, 18-36 (2011).
  7. Englund, C., et al. and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. Journal of Neuroscience. 25, 247-251 (2005).
  8. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature. 409, 714-720 (2001).
  9. Wang, X., Tsai, J. -. W., Lamonica, B., Kriegstein, A. R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci. 14, 555-561 (2011).
  10. Haydar, T. F., Ang, E., Rakic, P. Mitotic spindle rotation and mode of cell division in the developing telencephalon. Proc Natl Acad Sci USA. 100, 2890-2895 (2003).
  11. Takahashi, T., Nowakowski, R. S., Caviness, V. S. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J Neurosci. 15, 6046-6057 (1995).
  12. Pilaz, L. -. J., et al. Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proceedings of the National Academy of Sciences. 106, 21924-21929 (2009).
  13. Calegari, F., Huttner, W. B. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci. 116, 4947-4955 (2003).
  14. LaMonica, B. E., Lui, J. H., Hansen, D. V., Kriegstein, A. R. Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex. Nature Communications. 4, 1665 (2013).
  15. Postiglione, M. P., et al. Mouse Inscuteable Induces Apical-Basal Spindle Orientation to Facilitate Intermediate Progenitor Generation in the Developing Neocortex. Neuron. 72, 269-284 (2011).
  16. Silver, D. L., et al. The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nat Neurosci. 13, 551-558 (2010).
  17. Pulvers, J. N., et al. Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline. Proc Natl Acad Sci USA. , 107-16595 (2010).
  18. Feng, Y., Walsh, C. A. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron. 44, 279-293 (2004).
  19. Megraw, T. L., Sharkey, J. T., Nowakowski, R. S. Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends Cell Biol. 21, 1-11 (2011).
  20. Bond, J., et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet. 37, 353-355 (2005).
  21. Shu, T., et al. Doublecortin-like kinase controls neurogenesis by regulating mitotic spindles and M phase progression. Neuron. 49, 25-39 (2006).
  22. Nelson, B. R., Hodge, R. D., Bedogni, F., Hevner, R. F. Dynamic Interactions between Intermediate Neurogenic Progenitors and Radial Glia in Embryonic Mouse Neocortex: Potential Role in Dll1-Notch Signaling. Journal of Neuroscience. 33, 9122-9139 (2013).
  23. Hu, D. J. -. K., et al. Dynein recruitment to nuclear pores activates apical nuclear migration and mitotic entry in brain progenitor cells. Cell. 154, 1300-1313 (2013).
  24. Noctor, S. C., Martínez-Cerdeño, V., Ivic, L., Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Publishing Group. 7, 136-144 (2004).
  25. Tyler, W. A., Haydar, T. F. Multiplex Genetic Fate Mapping Reveals a Novel Route of Neocortical Neurogenesis, Which Is Altered in the Ts65Dn Mouse Model of Down Syndrome. Journal of Neuroscience. 33, 5106-5119 (2013).
  26. Noctor, S. C. Time-Lapse Imaging of Fluorescently Labeled Live Cells in the Embryonic Mammalian Forebrain. CSH Protoc. , (2011).
  27. Elias, L., Kriegstein, A. R. Organotypic slice culture of E18 rat brains. Journal of visualized experiments : JoVE. , (2007).
  28. Shitamukai, A., Konno, D., Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. Journal of Neuroscience. 31, 3683-3695 (2011).
  29. Hadjantonakis, A. -. K., Papaioannou, V. E. Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol. 4, 33 (2004).
  30. Higginbotham, H., Bielas, S., Tanaka, T., Gleeson, J. G. Transgenic mouse line with green-fluorescent protein-labeled Centrin 2 allows visualization of the centrosome in living cells. Transgenic Res. 13, 155-164 (2004).
  31. Walantus, W., Castaneda, D., Elias, L., Kriegstein, A. R. In utero intraventricular injection and electroporation of E15 mouse embryos. Journal of visualized experiments : JoVE. , (2007).
  32. Saito, T., Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol. 240, 237-246 (2001).
  33. Yang, Y. -. T., Wang, C. -. L., Van Aelst, L. DOCK7 interacts with TACC3 to regulate interkinetic nuclear migration and cortical neurogenesis. Nat Neurosci. 15, (2012).
  34. Siegenthaler, J. A., et al. Retinoic Acid from the meninges regulates cortical neuron generation. Cell. 139, 597-609 (2009).
  35. Schenk, J., Wilsch-Bräuninger, M., Calegari, F., Huttner, W. B. Myosin II is required for interkinetic nuclear migration of neural progenitors. Proceedings of the National Academy of Sciences. 106, 16487-16492 (2009).
check_url/pt/51298?article_type=t

Play Video

Citar este artigo
Pilaz, L., Silver, D. L. Live Imaging of Mitosis in the Developing Mouse Embryonic Cortex. J. Vis. Exp. (88), e51298, doi:10.3791/51298 (2014).

View Video