Bestendige praktijk verbetert de precisie van gecoördineerde bewegingen. Hier introduceren we een pellet bereiken taak die is ontworpen om het leren en het geheugen van de voorpoot deskundigen in muizen te evalueren.
Het bereiken van en het ophalen van objecten vereist nauwkeurige en gecoördineerde motorische bewegingen in de voorpoot. Wanneer muizen herhaaldelijk zijn opgeleid om te begrijpen en voedsel beloningen gepositioneerd op een specifieke locatie, hun motorische prestaties (gedefinieerd als nauwkeurigheid en snelheid) verbetert geleidelijk in de tijd, en plateaus te halen na aanhoudende training. Zodra een dergelijk verstrekkende vaardigheid wordt beheerst, heeft de verdere handhaving niet constant oefening nodig. Hier introduceren we een single-pellet bereiken taak om de aanschaf en het onderhoud van geschoolde voorpoot bewegingen in muizen te bestuderen. In deze video, beschrijven we eerst het gedrag van muizen die vaak worden aangetroffen in het leren en geheugen paradigma, en dan bespreken hoe deze gedragingen categoriseren en kwantificeren van de waargenomen resultaten. Gecombineerd met de muis genetica, kan dit paradigma worden gebruikt als een gedrags-platform om de anatomische onderbouwing, fysiologische eigenschappen en moleculaire mechanismen van leren en geheugen te verkennen.
Inzicht in de mechanismen van leren en geheugen is een van de grootste uitdagingen in de neurowetenschappen. In het motorische systeem, is het verwerven van nieuwe motorische vaardigheden met de praktijk vaak aangeduid als motorisch leren, terwijl het behoud van eerder geleerde motorische vaardigheden wordt beschouwd als motor geheugen 1. Het leren van een nieuwe motorische vaardigheid wordt meestal weerspiegeld in verbetering van de gewenste motorische prestaties in de tijd, tot een punt wanneer de motorische vaardigheden ofwel geperfectioneerd of tevredenheid consistent. Voor de meeste gevallen, kan de verworven motor geheugen blijven voor een lange tijd, zelfs zonder praktijk. Bij de mens, neuroimaging studies met behulp van positron emissie tomografie (PET) en functionele magnetische resonantie imaging (fMRI) hebben aangetoond dat de primaire motorische cortex (M1) activiteit veranderingen tijdens de acquisitie fase van motorische vaardigheden leren 2-4, en tijdelijke storing van M1-activiteit door lage frequentie transcraniële magnetische stimulatie leidt tot significantly verstoord behoud van motor gedragsmatige verbetering 5. Evenzo voorpoot-opleiding in ratten induceert functionele en anatomische plasticiteit in de M1, geïllustreerd door de toename van zowel c-fos als synapsvorm / neuron verhouding in het M1 contralateraal van de getrainde voorpoot tijdens de late fase van motorische leren 6. Bovendien is een vergelijkbare training paradigma versterkt ook laag 2/3 horizontale verbindingen in de contralaterale M1 overeenkomt met de getrainde voorpoot, wat resulteert in verminderde lange termijn potentiëring (LTP) en verbeterde lange termijn depressie (LTD) na ratten verwerven van de taken 7. Dergelijke synaptische modificatie is echter niet waargenomen bij de M1 corticale gebieden overeenkomen met ongetrainde voorpoot of achterpoten 8. Als alternatief, wanneer de M1 is beschadigd door een beroerte, zijn er dramatische tekorten in voorpoot specifieke motorische vaardigheden 9. Terwijl de meeste van de motor gedrags studies zijn uitgevoerd op mensen, apens, en ratten 2-8,10-17, muizen uitgegroeid tot een aantrekkelijk model systeem vanwege zijn krachtige genetica en lage kosten.
Hier presenteren we een voorpoot specifieke motorische vaardigheden leren paradigma: een single-pellet bereiken taak. In dit paradigma worden muizen getraind om hun voorpoten te breiden door een smalle spleet te begrijpen en op te halen voedsel pellets (gierst zaden) geplaatst op een vaste locatie, een gedrag analoog aan het leren boogschieten, dart-gooien, en schieten basketballen bij de mens. Dit bereiken taak is gewijzigd van afgelopen rat studies die hebben aangetoond soortgelijke resultaten tussen muizen en ratten 18. Met behulp van twee-foton transcraniële beeldvorming, heeft ons vorige werk tijdens deze training de dynamiek van dendritische stekels (postsynaptische structuren voor de meerderheid prikkelende synapsen) in de tijd gevolgd. We vonden dat een enkele training geleid tot een snelle opkomst van nieuwe dendritische stekels op piramidale neuronen in de motorische cortex contralateraal van de getrainde voorpoot. Subsequent opleiding van hetzelfde bereiken taak bij voorkeur gestabiliseerd deze-learning geïnduceerde stekels, die bleef lang na de training beëindigd 19. Bovendien stekels die bleek tijdens herhalingen van het bereiken taak neiging te clusteren langs dendrieten, terwijl stekels gevormd tijdens tandem uitvoering van het bereiken van de taak en een andere voorpoot-specifieke motorische taak (dwz de pasta handling taak) niet clusteren 20.
In de huidige video beschrijven we stap voor stap het instellen van deze gedragsproblemen paradigma van de eerste onthouden van voedsel te vormen, en sensomotorische training. We hebben ook de gemeenschappelijke gedrag van muizen beschrijven tijdens het proces van het uitvoeren van deze gedrags paradigma en hoe deze gedragingen worden gecategoriseerd en geanalyseerd. Tot slot bespreken we de voorzorgsmaatregelen die nodig zijn om een dergelijk leerparadigma oefenen en de onderwerpen die tijdens de data-analyses kunnen worden aangetroffen.
Belang van het vormgeven fase:
Door de toegenomen bezorgdheid van zich in een onbekende omgeving, is het meestal moeilijk muizen worden getraind in een nieuwe omgeving 21,22. Daarom is het doel van de vormgeving is om muizen vertrouwd te maken met de opleiding kamer, de trainer (dwz hun angst te verminderen), en de eisen die taak (dwz zaad als voedselbron te identificeren). Een ander doel van de vormen is om de gewenste onderdelen van individuele muizen bepalen toek…
The authors have nothing to disclose.
Dit werk wordt ondersteund door een subsidie (1R01MH094449-01A1) van het National Institute of Mental Health aan YZ
Training chamber in clear acrylic box | For dimensions, see Fig. 1A |
Tilted tray for shaping | custom-made from glass slides, see Fig. 1B |
Food platform for training | For dimensions, see Fig. 1C |
Millet seeds | filtered from “Wild Bird Food Dove and Quail Blend Wild Bird Food (All Living Things) |
Forceps | For placing the seeds |
A weighing scale | For daily body weight measurement |
A stopwatch | For time measurement during shaping/training sessions |