Summary

在实时以下的肺炎球菌毒力因子在小鼠急性肺炎模型的影响采用发光细菌

Published: February 23, 2014
doi:

Summary

肺炎链球菌是导致病原体引起严重的社区获得性肺炎,负责超过200万世界各地的死亡。的牵连健身或致病细菌因素的影响,可以在实时中采用发光细菌急性小鼠肺炎或菌血症模型来监测。

Abstract

肺炎是发展中国家的主要医疗保健问题和工业化国家之一,具有相当的发病率和死亡率。尽管在知识这个疾病,重症监护病房(ICU)的可用性,并使用有效的抗菌药物和有效的疫苗的进步,死亡率仍然很高1。 肺炎链球菌是社区获得性肺炎的病原体领先(CAP)和菌血症的人类最常见的原因之一。这种病菌配备的表面暴露的黏附和毒力因素导致肺炎和侵入性肺炎球菌疾病(IPD)的医疗设备。细菌健身或毒力因子在体内的作用进行评估是最重要的解开S。肺炎链球菌致病机制。肺炎,菌血症和脑膜炎的小鼠模型已被用于确定肺炎球菌因素在昼夜温差的影响ferent感染的阶段。在这里,我们描述了一个协议来监控实时传播肺炎球菌在小鼠鼻腔或腹腔内感染发光细菌之后。该结果表明,繁殖和传播的肺炎球菌的下呼吸道和血液,从而可以可视化并进行评价使用成像系统和所附的分析软件。

Introduction

由病毒或细菌呼吸道感染仍然是全球最常见的社区获得性或临床问题引起全球所有死亡的大约三分之一之一。关键细菌物种是流感嗜血杆菌肺炎链球菌 2。然而,这些细菌种类是通常的自然呼吸道菌群的常见成分。因此,细菌马车是一定风险的侵入性疾病,并根据免疫状况或个人的倾向也。无症状定植被触发侵袭性感染。 肺炎链球菌是社区获得性肺炎(CAP)和菌血症人类最常见的原因之一,主要病原体。在健康个体S。肺炎链球菌 (肺炎球菌)往往是上呼吸道,在那里他们都面临着非致病性细菌无症状和无害殖民者常住菌也与病原体如嗜血杆菌属的。或金黄色葡萄球菌和人的免疫防御系统的第一道防线。携带率最高的是年幼的孩子(37%),甚至在拥挤的日间护理中心(58%)高3-5。最年轻的人群和老人,通过空气传播的载体和鼻咽部分泌物6接受肺炎球菌,属于使用的肺炎球菌结合疫苗(PCV10或PCV13在儿童和23价多糖PPSV23成人)一个高危人群和疫苗接种建议在美国(美国)和许多欧洲国家4。在PPSV23涵盖负责〜90%的菌血症性肺炎球菌疾病在美国和欧洲,预防成人从而有效地侵入性肺炎球菌疾病(IPD)的血清型,而PCVS涵盖儿童中最常见的血清型。因此,瞳距由于疫苗的种类(VT)是热镀CED但非疫苗血清型显示高毒力潜力及耐药性已经出现4,7-12。鼻咽部的水库是起点肺炎蔓延到鼻窦或中耳引发有害的局部感染。更重要的是,肺炎球菌直接通过气道蔓延至支气管和肺部造成威胁生命的第4,13。肺部感染常常伴随着组织和屏障的破坏,从而使病原体传播到血液中,并造成IPD。 CAP和IPD的发病率最高,免疫功能低下者或在4,13年代的极端。负责从共生与高致病病原体转换的情况仍在争论。然而,除了改变宿主的易感性和进化适应伴随着较高的毒力和增加的抗生素抗性已建议对PNE至关重要的影响umococcal感染14-16。

病原体被赋予了黏附素介导的亲密接触粘膜上皮细胞的多样性。克服气道黏液后,肺炎球菌粘附于宿主细胞是通过表面暴露粘附素与细胞受体相互作用的直接并利用细胞外基质成分或血清蛋白的桥联分子4,17,18便利。多才多艺的病原体肺炎球菌还配备了参与宿主免疫防御机制回避的因素。此外,它们具有适应各种宿主milieus如肺,血液和脑脊液(CSF),分别为5,17,19,20的能力。

细菌因素对发病机制和炎性宿主反应的影响进行了研究中的肺炎,菌血症实验动物模型中,或脑膜炎21-25。尽管是人类的病原体,这些模型是我们LL成立的破译肺炎球菌组织嗜性,致病机制,或肺炎球菌疫苗候选保护性。近交系小鼠品系的遗传背景决定了易患肺炎。鼻内感染了肺炎球菌免疫BALB / c小鼠,结果为:耐腐蚀,而CBA / Ca和SJL小鼠抗肺炎球菌感染22更容易。这意味着,类似于人类的遗传背景和宿主防御机制确定感染的结果。因此,有必要进一步努力解开抗性基因座的小鼠不容易受到肺炎球菌感染的基因组中。该发现导致了变化的体内毒性的协议。而不是过去常常使用的近交系BALB / c小鼠后,极易受到CD-1/MF1远交小鼠品系人现在通常用来研究的功能丧失的肺炎球菌的致病性或适用性的因素26-28的效果。此外,可用生物发光性肺炎和光学成像技术的允许感染的实时生物发光生物成像。在肺炎球菌的优化luxABCDE基因盒(质粒保罗的TN 4001 luxABCDE公里R)已经插入到染色体中通过转座子诱变的单一整合位点。生物发光肺炎链球菌已被用来评估短少在致病性或适用性的因素及其易位从一个解剖部位到另一个26,28-31肺炎球菌突变体的衰减。

在这里,我们提供了一个协议,用于在小鼠肺炎或败血症模型肺炎球菌感染的生物成像。放大和传播生物发光肺炎球菌在鼻内或腹膜内感染的小鼠可以很容易地随着时间的推移,使用光学成像系统和相同的动物在不同时间点监测。

Protocol

这里所描述的动物感染实验必须严格按照当地和国际准则和规定的使用脊椎动物( 如欧洲健康实验动物科学协会(FELASA)的联邦法)进行。实验必须由当地的伦理板和机构动物护理委员会的批准。所有实验与S肺炎在实验室或动物感染的II类生物安全柜进行。 1。生物发光Pneumocococi的传染性股票的制备准备在Todd-Hewitt肉汤补充有1%(重量/体积)酵母提取物…

Representative Results

蛋氨酸收购和吸收是对肺炎球菌,保持健康在他们的主机利基32,33至关重要。蛋氨酸ABC转运脂蛋白是由SPD _ 0151基因(TIGR4:sp_0149)编码在D39和命名MetQ 32。肺炎球菌进一步产生蛋氨酸合成酶(D39:Spd_0510 – Spd_0511; TIGR4 Sp_0585 – Sp_0586,丈量和metF的)。蛋氨酸在一个化学成分确定的培养基中缺乏影响肺炎和类似,缺乏蛋氨酸32,33的蛋氨酸结合脂蛋白MetQ受?…

Discussion

在动物身上进行的所有实验必须由地方当局和伦理委员会的批准。在体内实验感染的细菌负荷在感染动物的各种宿主龛,必须在不同时间点在感染后确定。在这些实验条件的动物具有从血液,鼻咽,bronchoalvelar灌洗或器官如肺,脾和脑细菌的隔离之前被牺牲掉。计算每个主机小生细菌的数量,并评估细菌因素对毒力的影响时,血液或器官必须由细菌分离随之恢复和电镀在固体培养基上?…

Declarações

The authors have nothing to disclose.

Acknowledgements

研究在实验室被授予由德意志研究联合会(DFG医管局3125/3-2,DFG医管局3125/4-2)和德国联邦教育与研究部(BMBF)医疗感染基因组学(FKZ 0315828A)到上海的支持。

Materials

Todd Hewitt broth Carl Roth, Karlsruhe, Germany X936.1
Yeast extract Carl Roth, Karlsruhe, Germany 2363.2
Blood agar plates Oxoid, Wesel, Germany PB5039A
Kanamycin Carl Roth, Karlsruhe, Germany T832.2
Erythromycin Sigma-Aldrich,Taufkirchen, Germany E6376
fetal bovine serum (FBS) PAA Laboratories, Coelbe, Germany A11-151
CD-1 mice, female Charles River, Sulzfeld, Germany CD1SIFE06W08W female CD-1 mice, six to eight weeks old
Ketamin 500mg, Curamed injection solution Schwabe-Curamed, Karlsruhe, Germany
Rompun 2%, injection solution Bayer Animal Health, Monheim, Germany
BD Plastipak 1 ml syringes Becton Dickinson, Heidelberg, Germany 300015 sterile Luer-Lok™ syringes with needle
Gel Loader Tips peqlab 81-13790 MµltiFlex™ Tips
Hyaluronidase Sigma-Aldrich H3884-100mg Hyaluronidase Type IV-S from Bovine test
Oxygen Air Liquide, Düsseldorf, Germany M1001L50R2A001
Isofluoran Baxter, Unterschleißheim, Germany
pGEM-T Easy Promega, Mannheim, Germany
Oligonucleotides Eurofins MWG, Ebersberg, Germany
Qiaprep Spin Midiprep Kit Qiagen, Hilden, Germany 27104
PCR DNA purification kit Qiagen, Hilden, Germany 28106
Equipment
Living Image 4.1 software Caliper Life Sciences/PerkinElmer, Rodgau, Germany
XGI-8 Gas Anesthesia System Caliper Life Sciences/PerkinElmer, Rodgau, Germany
IVIS Spectrum Imaging System Caliper Life Sciences/PerkinElmer, Rodgau, Germany
Biophotometer Eppendorf AG, Hamburg, Germany

Referências

  1. Niederman, M. S., et al. Guidelines for the management of adults with community-acquired pneumonia. Diagnosis, assessment of severity, antimicrobial therapy, and prevention. Am. J. Respir. Crit. Care Med. 163, 1730-1754 (2001).
  2. WHO, The global burden of disease: 2004 update. World Health Organization. , (2008).
  3. Bogaert, D., et al. Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet. 363, 1871-1872 (2004).
  4. Gamez, G., Hammerschmidt, S. Combat pneumococcal infections: adhesins as candidates for protein-based vaccine development. Curr. Drug Targets. 13, 323-337 (2012).
  5. Mook-Kanamori, B. B., Geldhoff, M., vander Poll, T., Dvan de Beek, D. Pathogenesis and pathophysiology of pneumococcal meningitis. Clin. Microbiol. Rev. 24, 557-591 (2011).
  6. Musher, D. M. How contagious are common respiratory tract infections. N. Engl. J. Med. 348, 1256-1266 (2003).
  7. Brueggemann, A. B., Pai, R., Crook, D. W., Beall, B. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. PLoS Pathog. 3, (2007).
  8. Munoz-Almagro, C., et al. Emergence of invasive pneumococcal disease caused by nonvaccine serotypes in the era of 7-valent conjugate vaccine. Clin. Infect. Dis. 46, 174-182 (2008).
  9. Whitney, C. G. Impact of conjugate pneumococcal vaccines. Pediatr. Infect. Dis. J. 24, 729-730 (2005).
  10. Whitney, C. G., et al. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N. Engl. J. Med. 348, 1737-1746 (2003).
  11. Lynch, J. P., Zhanel, G. G. Streptococcus pneumoniae: epidemiology and risk factors, evolution of antimicrobial resistance, and impact of vaccines. Curr. Opin. Pulm. Med. 16, 217-225 (2010).
  12. Singleton, R. J., et al. Invasive pneumococcal disease caused by nonvaccine serotypes among Alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA. 297, 1784-1792 (2007).
  13. Dockrell, D. H., Whyte, M. K., Mitchell, T. J. Pneumococcal pneumonia: mechanisms of infection and resolution. Chest. 142, 482-491 (2012).
  14. Lieberman, T. D., et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat. Genet. 43, 1275-1280 (2011).
  15. Yang, J., Tauschek, M., Robins-Browne, R. M. Control of bacterial virulence by AraC-like regulators that respond to chemical signals. Trends Microbiol. 19, 128-135 (2011).
  16. Young, B. C., et al. Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc. Natl. Acad. Sci. U.S.A. 109, 4550-4555 (2012).
  17. Kadioglu, A., Weiser, J. N., Paton, J. C., Andrew, P. W. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat. Rev. Microbiol. 6, 288-301 (2008).
  18. Voss, S., Gamez, G., Hammerschmidt, S. Impact of pneumococcal microbial surface components recognizing adhesive matrix molecules on colonization. Mol. Oral Microbiol. 27, 246-256 (2012).
  19. Koppe, U., Suttorp, N., Opitz, B. Recognition of Streptococcus pneumoniae by the innate immune system. Cell. Microbiol. 14, 460-466 (2012).
  20. Paterson, G. K., Mitchell, T. J. Innate immunity and the pneumococcus. Microbiology. 152, 285-293 (2006).
  21. Gerber, J., et al. A mouse model of Streptococcus pneumoniae meningitis mimicking several features of human disease. Acta Neuropathol. 101, 499-508 (2001).
  22. Gingles, N. A., et al. Role of genetic resistance in invasive pneumococcal infection: identification and study of susceptibility and resistance in inbred mouse strains. Infect. Immun. 69, 426-434 (2001).
  23. Holmes, A. R., et al. The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol. Microbiol. 41, 1395-1408 (2001).
  24. Koedel, U., Klein, M., Pfister, H. W. New understandings on the pathophysiology of bacterial meningitis. Curr. Opin. Infect. Dis. 23, 217-223 (2010).
  25. Medina, E. Murine model of pneumococcal pneumonia. Methods Mol. Biol. 602, 405-410 (2010).
  26. Hartel, T., et al. Impact of glutamine transporters on pneumococcal fitness under infection-related conditions. Infect. Immun. 79, 44-58 (2011).
  27. Hermans, P. W., et al. The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonization. J. Biol. Chem. 281, 968-976 (2006).
  28. Jensch, I., et al. PavB is a surface-exposed adhesin of Streptococcus pneumoniae contributing to nasopharyngeal colonization and airways infections. Mol. Microbiol. 77, 22-43 (2010).
  29. Kadioglu, A., et al. Pneumococcal protein PavA is important for nasopharyngeal carriage and development of sepsis. Mol. Oral Microbiol. 25, 50-60 (2010).
  30. Orihuela, C. J., Gao, G., Francis, K. P., Yu, J., Tuomanen, E. I. Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J. Infect. Dis. 190, 1661-1669 (2004).
  31. Francis, K. P., et al. Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect. Immun. 69, 3350-3358 (2001).
  32. Basavanna, S., et al. The effects of methionine acquisition and synthesis on Streptococcus pneumoniae growth and virulence. PLoS One. 8, (2013).
  33. Hartel, T., et al. Characterization of central carbon metabolism of Streptococcus pneumoniae by isotopologue profiling. J. Biol. Chem. 287, 4260-4274 (2012).
  34. Hammerschmidt, S., et al. The host immune regulator factor H interacts via two contact sites with the PspC protein of Streptococcus pneumoniae and mediates adhesion to host epithelial cells. J. Immunol. 178, 5848-5858 (2007).
  35. Voss, S., et al. The choline-binding protein PspC of Streptococcus pneumoniae interacts with the C-terminal heparin-binding domain of vitronectin. J. Biol. Chem. , (2013).
  36. Cartwright, K. Pneumococcal disease in western Europe: burden of disease, antibiotic resistance and management. Eur. J. Pediatr. 161, 188-195 (2002).
  37. vander Linden, M., Al-Lahham, A., Nicklas, W., Reinert, R. R. Molecular characterization of pneumococcal isolates from pets and laboratory animals. PLoS One. 4, (2009).
  38. Brehm, , et al. Sequence of the adenine methylase gene of the Streptococcus faecalis plasmid pAM beta 1. Nucleic Acids Res. 15, 3177 (1987).

Play Video

Citar este artigo
Saleh, M., Abdullah, M. R., Schulz, C., Kohler, T., Pribyl, T., Jensch, I., Hammerschmidt, S. Following in Real Time the Impact of Pneumococcal Virulence Factors in an Acute Mouse Pneumonia Model Using Bioluminescent Bacteria. J. Vis. Exp. (84), e51174, doi:10.3791/51174 (2014).

View Video