Aqui nós descrevemos os procedimentos experimentais envolvidos em dois fótons de imagem de rato córtex durante o comportamento em um ambiente de realidade virtual.
Nos últimos anos, dois fótons de imagem tornou-se uma ferramenta valiosa na neurociência, uma vez que permite a medição crônica da atividade de células geneticamente identificados durante comportamento 1-6. Aqui nós descrevemos métodos para realizar imagem de dois fótons em rato córtex enquanto o animal navega um ambiente de realidade virtual. Nós nos concentramos nos aspectos dos procedimentos experimentais, que são fundamentais para a imagem em um animal se comportar em um ambiente virtual iluminado. Os principais problemas que surgem nesta configuração experimental que nós aqui endereço são: minimizar artefatos de movimento do cérebro relacionada, minimizando luz vazamento do sistema de projeção de realidade virtual, e minimizando o dano tecidual induzida por laser. Nós também fornecemos software de amostra para controlar o ambiente de realidade virtual e fazer o acompanhamento dos alunos. Com estes processos e os recursos que deveria ser possível converter um microscópio de dois fotões convencional para uso em comportando ratinhos.
Dois fótons de imagem de cálcio (indicadores geneticamente codificados como GCaMP5 7 ou R-GECO 8 ou corantes sintéticos como OGB ou Fluo4) emergiu como um poderoso método de medir a atividade neuronal em ratos comportando 1-6. Ele permite a medição simultânea da actividade de centenas de células de acção quase único potencial resolução, até cerca de 800 um abaixo da superfície do cérebro 9,10. Além disso, por meio de indicadores de cálcio geneticamente codificados (Gecis) atividade neuronal pode ser medido cronicamente 5,11,12, e em tipos de células geneticamente definidas 13. Juntos, estes métodos proporcionam um grau de resolução temporal e espacial, que abre um grande número de novas possibilidades para o estudo de computação neuronal in vivo.
A intervenção cirúrgica é necessária para expor e rotular o cérebro do rato para a imagem latente. As células são tipicamente transfectados utilizando um recombinante vir adeno-associado nos sistema (AAV) para entrega GECI e uma janela craniana é implantado no local da injecção para ter acesso óptico ao cérebro. Uma barra de cabeça é então ligado ao crânio para fixação da cabeça sob o microscópio de dois fotões. A concepção e implementação dessas medidas é fundamental, como a maioria dos problemas com a imagem acordado surgem de instabilidades na preparação. Idealmente o procedimento descrito aqui deve permitir a imagem crônica de até vários meses após a cirurgia.
Para ativar o comportamento visualmente guiado durante dois fótons de imagem, o rato fixo cabeça fica em um ar apoiado esteira esférica, que ele pode usar para navegar em um ambiente de realidade virtual. Locomotion do mouse sobre a esteira é acoplado ao movimento no ambiente virtual que é exibido em uma tela toroidal em torno do 14,15 mouse. Variáveis comportamentais, tais como locomoção, estímulo visual, e posição da pupila podem ser gravadas 6.
t "> Nós descrevemos os procedimentos envolvidos em dois fótons de imagem crônica em camundongos explorando um ambiente de realidade virtual Os principais pontos abordados são:. redução de artefatos de movimento, a redução do vazamento de luz, a maximização do número de células gravadas simultaneamente, e minimização de danos foto. Nós também fornecemos detalhes sobre como configurar a esteira apoiada pelo ar, controle de aluno eo ambiente de realidade virtual. Os procedimentos descritos aqui pode ser usado para geração de imagens de populações de células marcadas com fluorescência em camundongos fixos na cabeça em um potencialmente grande variedade de paradigmas comportamentais .A chave para o sucesso do comportamento de imagem de dois fotões é a estabilidade da preparação de duas maneiras:
The authors have nothing to disclose.
Este trabalho foi apoiado pelo Instituto Friedrich Miescher de Pesquisa Biomédica, a Sociedade Max Planck, e do Programa Científico Fronteiras Humanas.
cover slips (d = 3-5 mm) | Menzel | window implant | |
InSight DeepSee laser | Spectra-Physics | microscope | |
12kHz resonance scanner | Cambridge Technology | G1-003-30026 | microscope |
Galvometer | Cambridge Technology | G6215H | microscope |
Digitizer | National Instruments | NI 5772 | microscope |
FPGA | National Instruments | PXIe 7965R | microscope |
Acquisition card | National Instruments | PCIe 6363 | microscope |
Emission filter 525/50 | Semrock | FF03-525/50-25 | microscope |
Piezo-electric z-drive | Physikinstrumente | P-726.1CD | microscope |
Controller for piezo-electric drive | Physikinstrumente | E665 LVPZT | microscope |
Objective 16x, 0.8NA | Nikon | CFI75 | microscope |
Current amplifier | Femto | DHPCA-100 | microscope |
Photomultiplier tube | Hamamatsu | microscope | |
USB Camera without IR filter | ImagingSource | DMK22BUC03 | pupil tracking |
Objective 50 mm | ImagingSource | M5018-MP | pupil tracking |
Macro adapter rings | ImagingSource | LAexSet | pupil tracking |
Optical computer mouse | Logitech | G500 | motion tracking |
Styrofoam ball 20 cm | e.g. idee-shop.de | 08797.00.15 | virtual environment |
LED projector | Samsung | SP-F10M | virtual environment |
Acquisition card | National Instruments | NI 6009 | virtual environment |
Panda3D game engine | www.panda3d.org | virtual environment | |
Numpy library for Python | www.scipy.org | virtual environment | |
Scipy library for Python | www.scipy.org | virtual environment | |
NI-DAQmx driver | National Instruments | www.ni.com | virtual environment |
Ultrasound gel | Dahlhausen | 5701.0342.10 | imaging |