Summary

优化烟气设置通过电脑模拟来促进微藻生长的光生物反应器中

Published: October 01, 2013
doi:

Summary

从电厂烟道气是一种廉价的CO 2源藻类生长。我们已经建立原型“烟气海藻栽培”系统并描述如何扩大藻类培养过程。我们已经证明了使用一个传质生物反应模型来模拟,并设计烟道气的最佳操作小球藻的生长。藻光生物反应器。

Abstract

从电厂烟气能促进藻类栽培和减少温室气体排放1。微藻不仅比3的植物更有效地捕获太阳能,而且合成先进的生物燃料2-4。一般情况下,大气中的CO 2是不是有足够的来源,支持最大藻类生长5。另一方面,在高浓度的CO 2的工业废气对藻类的生理不良影响。因此,无论培养条件(如营养物和光),并在烟道气流进入光生物反应器的控制是重要的,以开发一种有效的“烟道气藻类”系统。研究者提出了不同的光生物反应器配置4,6和培养战略7,8烟气。在这里,我们提出了一个协议,它演示了如何使用模型来预测响应微藻生长烟气设置。我们PERFORM两个实验说明和模型模拟,以确定烟气藻类生长的有利条件。我们开发了一个莫诺基于模型加上传质和光强度的公式来模拟在均匀光生物反应器的微藻生长。该模型模拟比较藻类生长和烟气消费在不同烟气设置。该模型说明:1)如何藻类的生长是由CO 2的不同体积传质系数的影响; 2)我们如何可以通过动态优化方法(DOA)找到最优的CO 2浓度为藻类生长; 3)我们如何设计一个矩形的通断烟气脉冲,以促进藻类生物量增长,以减少烟道气的使用量。在实验方面,我们提出了一个协议,用于不断增长的小球藻烟道气(天然气燃烧产生的)下。实验结果定性地验证了模型预测的高频烟气普LSES可以显著提高藻类栽培。

Protocol

1。海藻栽培和规模化发展使用去离子水含有0.55克/ L -1尿素,0.1185克/ L -1 KH 2 PO 4,0.102克/ L -1的用MgSO 4·7H 2 O 0.015克/升-1的FeSO 4·7H制备的培养基2 O和22.5微升微量元素(18.5克/升-1 H 3 BO 3,21.0克/升-1的CuSO 4·5H 2 O 73.2克/升-1的MnCl 2·4H 2 O,13.7克/升-1 COSO <…

Representative Results

我们以前的实验分析表明,连续烟气暴露产生不利影响小球藻生长,同时降低二氧化碳曝光时间能缓解这种抑制作用13。为了更好地理解烟气流入和藻类生长的关系,我们开发的实证模型来模拟生物量生长在烟气的存在。我们假设在烟道气中含有15%的CO 2(注:从煤燃烧的典型的CO 2浓度为10-15%,而从氧燃烧电厂的烟道气具有的CO 2> 15%)。的传?…

Discussion

在这项研究中,我们证明了实验方案来扩大栽培藻类光生物反应器中。我们还考察了几种烟气投入,以促进藻类生长。利用传质和生物反应模型,我们表明,CO 2传质系数K 香格里拉 (由生物反应器混合条件和CO 2表观速度决定)强烈地影响着藻类生长。该模型模拟结果表明连续的通断烟气脉冲短脉冲宽度和高开关频率可以提高小球藻生长( 高频开关烟道气?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究是由美国国家科学基金会的程序(研究经验的本科生)在华盛顿大学圣路易斯分校的支持。

Materials

Spectrophotometer Thermal Scientific, Texas USA
CO2 gas analyzer LI-COR, Biosciences, Nebraska USA
Mass flow controllers OMEGA Engineering INC, Connecticut USA FMA5416
Data acquisition card Measurement Computing Corporation, Massachusetts USA USB-1208FS
Filters Aerocolloid LLC, Minnesota USA
MATLAB/Simulink Mathworks, Massachusetts USA R2010a
Glass bottles Fisher USA

Referências

  1. Granite, E. J., O’Brien, T. Review of novel methods for carbon dioxide separation from flue and fuel gases. Fuel Process. Technol. 86, 1423-1434 (2005).
  2. Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306 (2007).
  3. Li, Y., Horsman, M., Wu, N., Lan, C. Q., Dubois-Calero, N. Biofuels from microalgae. Biotechnol. Prog. 24, 815-820 (2008).
  4. Schenk, P., et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Research. 1, 20-43 (2008).
  5. Kumar, A., et al. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 28, 371-380 (2010).
  6. Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., Das, D. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 102, 4945-4953 (2011).
  7. Lee, J. -. N., Lee, J. -. S., Shin, C. -. S., Park, S. -. C., Kim, S. -. W. Methods to enhance tolerances of Chlorella KR-1 to toxic compounds in flue gas. Appl. Biochem. Biotechnol. 84-86, 329-342 (2000).
  8. Zeiler, K. G., Heacox, D. A., Toon, S. T., Kadam, K. L., Brown, L. M. The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas. Energy Conversion and Management. 36 (95), 707-712 (1995).
  9. Martínez, M. E., Camacho, F., Jiménez, J. M., Espínola, J. B. Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth. Process Biochem. 32 (96), 93-98 (1997).
  10. Van’t Riet, K. Review of measuring methods and results in nonviscous gas-liquid mass transfer in stirred vessels. Ind. Eng. Chem. Process. 18, 357-364 (1979).
  11. Methekar, R., Ramadesigan, V., Braatz, R. D., Subramanian, V. R. Optimum charging profile for lithium-ion batteries to maximize energy storage and utilization. ECS Trans. 25, 139-146 (2010).
  12. Kameswaran, S., Biegler, L. T. Simultaneous dynamic optimization strategies: Recent advances and challenges. Comput. Chem. Eng. 30, 1560-1575 .
  13. He, L., Subramanian, V. R., Tang, Y. J. Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas. Biomass Bioenergy. 41, 131-138 (2012).
  14. Novak, J. T., Brune, D. E. Inorganic carbon limited growth kinetics of some freshwater algae. Water Res. 19 (85), 215-225 (1985).
  15. Landry, M. R., Haas, L. W., Fagerness, V. L. Dynamics of microbial plankton communities experiments in Kaneohe Bay, Hawaii. Mar. Ecol. 16, 127-133 (1984).
  16. Silva, H. J., Pirt, S. J. Carbon dioxide inhibition of photosynthetic growth of Chlorella. J. Gen. Microbiol. 130, 2833-2838 (1984).
  17. Powell, E. E., Mapiour, M. L., Evitts, R. W., Hill, G. A. Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresour. Technol. 100, 269-274 (2009).
  18. Sawyer, C. N., McCarty, P. L., Parkin, G. F. . Chemistry for environmental engineering and science. , 144 (2003).
  19. Doucha, J., Straka, F., Lívanský, K. Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. 17, 403-412 (2005).
  20. Thimijan, R. W., Heins, R. D. Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. Hortscience. 18, 818-822 (1983).

Play Video

Citar este artigo
He, L., Chen, A. B., Yu, Y., Kucera, L., Tang, Y. Optimize Flue Gas Settings to Promote Microalgae Growth in Photobioreactors via Computer Simulations. J. Vis. Exp. (80), e50718, doi:10.3791/50718 (2013).

View Video