Bir bioprinter bir kurban kalıp dayalı desenli hidrojeller oluşturmak için kullanıldı. Poloksamer kalıp ikinci bir hidrojel ile dolduruldu ve daha sonra üçüncü bir hidrojel ile doldurulmuş boşluklar bırakarak elüt edilmiştir. Bu yöntem Biyopolimerlerin karmaşık mimarileri oluşturmak için hızlı sağım ve poloksamerin iyi baskı kullanır.
Bioprinting hızlı prototipleme sektöründe kökeni olan bir gelişmekte olan bir teknolojidir. Farklı baskı süreçleri temas bioprinting 1-4 (ekstrüzyon, daldırma kalem ve yumuşak litografi), temassız bioprinting 5-7 (lazer ileri transferi, mürekkep püskürtmeli birikimi) ve bu iki foton fotopolimerizasyon 8 olarak lazer tabanlı teknikler ayrılabilir. Bu tür farklı hücre tipleri 17 ko-kültür etkileri gibi temel biyolojik sorulara cevap vermek için bu gibi doku mühendisliği 9-13, biyosensör mikroüretim 14-16 gibi bir araç olarak bir çok uygulama için kullanılabilir. Ortak fotolitografik veya yumuşak-taş baskı yöntemlerinin aksine, ekstrüzyon bioprinting ayrı bir maske ya da damga gerektirmeyen bir avantaja sahiptir. CAD yazılımı kullanarak, yapının tasarımı hızla operatörün gereklerine göre değiştirilebilir ve ayarlanabilir. Bu litografi tabanlı daha esnek bioprinting yaparyaklaşımlar.
Burada örnek olarak bir hidrojel içinde ayağı bir dizi kullanarak bir çok malzeme 3D yapısı oluşturmak için bir kurban kalıp baskı göstermektedir. Bu yapı taşları bir sinir kılavuz kanalı içinde bir damar ağı veya tüpler için içi boş yapılarının temsil edebilir. Geçici kalıp için seçilen malzeme poloksamer 407, 4 sıvıdır mükemmel baskı özelliklerine sahip bir polimer thermoresponsive ° C idi ve jelleştirme sıcaklığının üzerinde bir katı madde ~ 20 ° C'de% 24,5 ağırlık / hacim çözümler 18. Bu özellik, poloksamer dayalı geçici kalıp talep üzerine akıtılan olmasını sağlar ve özellikle dar geometrileri için, bir katı maddenin yavaş çözünme üzerinde avantajlara sahiptir. Poloxamer kurban kalıp oluşturmak için mikroskop cam slaytlar basılmıştır. Agaroz kalıp içine pipetlenir ve jelleştirme kadar soğutuldu. Buz gibi soğuk suda poloksamer elüsyon sonra, agaroz kalıp boşlukları aljinat metakrilat sp ile doldurulmuşturFITC etiketli fibrinojen ile iked. Dolu boşluklar daha sonra UV ile çapraz bağlantılı olduğu ve yapı bir epi-floresan mikroskop ile görüntülendi.
Doku mühendisliği yaklaşımları insan doku ve organları 19,20 rejenerasyonu ile ilgili olarak son yıllarda çok ilerleme kaydettik. Bununla birlikte, şimdiye kadar, doku mühendisliği odak çoğu zaman basit bir yapı ya da mesane 21,22 ya da deri 23-25 kadar küçük boyutlara sahip doku ile sınırlı kalmıştır. Insan vücudu, ancak, hücreler ve hücre dışı matris bir uzamsal tanımlanmış bir şekilde düzenlenmiş çok sayıda karmaşık üç boyutlu bir doku içerir. Bu dokuların üretimi için, bir teknik belirtilen pozisyonlarda üç boyutlu bir yapı içinde hücre ve hücre dışı matriks iskele yerleştirebilirsiniz gereklidir. Bioprinting üretim karmaşık üç boyutlu dokuların vizyonu 10,11,26-28 gerçekleştirilebilir böyle bir tekniği olma potansiyeline sahiptir.
Bioprinting desenlendirme için malzeme transferi süreçlerinin kullanımı "olarak tanımlanan ve biyolojik rel montaj olduğunuteknisyenleri tarafından, geçerli malzemeler – moleküller, hücre, doku ve biyolojik biyomalzemeler -. bir veya daha fazla biyolojik fonksiyonları "4 gerçekleştirmek için bir reçete kuruluşla Birkaç farklı teknikler kapsar iki alt mikron çözünürlüklü kadar farklı çözünürlüklerde ve uzunluk ölçüleri, az çalışan ekstrüzyon baskı 1,12,30 için 420 mikron 150 mikron bir çözünürlük foton polimerizasyon 29. Tek bir malzeme veya malzeme kombinasyonu her yöntemin 31 gereksinimlerini tatmin edecek. ekstrüzyon baskı için, anahtar parametreleri viskozite ve jelleşme zaman vardır Yüksek viskozite ve hızlı jelleşme arzu 32,.
3D baskı karmaşık geometrileri 30,33,34 oluşturmak için kurban kalıp kolay oluşturulmasını sağlayan bir tekniktir. Bu işlem, bir ekstrüzyon bioprinter gibi bir hızlı prototip tekniği kullanılarak bir kalıbın yapımında dayanmaktadır. Oluşturulan kurban kalıp kullanılırOnların düşük viskoziteli ve yavaş jelleşme süresi nedeniyle yazdırmak için zor malzemelerden kompleks yapılar oluşturmak için. Burada sunulan yöntem, düşük bir sıcaklıkta hızlı bir şekilde çözünür ve doğru bir şekilde ekstrüde edilebilir bir malzemeden oluşan bir geçici kalıp oluşturulmasını içerir. Blok kopolimer, poli (etilen glikol) 99-poli (propilen glikol), 67-poli (etilen glikol) 99 (aynı zamanda Pluronic ® F 127 veya poloksamer 407 olarak da bilinir), bu gereksinimleri yerine getirmektedir. Zaten bildiğimiz kadarıyla, sıvı ortamlarda kendi istikrarsızlık nedeniyle değiştirilmemiş sürümünde yazdırmak için hiç kullanılmamış, ekstrüzyon baskı 1 değiştirilmiş bir versiyonu kullanılmıştır ama olmuştur. Poloksamer 407, aynı zamanda, ters termal duyarlı davranış, 18, yani soğutma üzerine bir sol bir jelden bu değişiklikleri gösterir. En önemlisi, çok yüksek sadakat karmaşık keyfi kavisli yapılarına yazdırılabilir. Bu sayede, bir yapısal bir hidrojel oluşturmaDüşük viskoziteli bir madde, bu durumda yavaş jelleşen agaroz, basılı geçici kalıp içine çözeltisi pipetleme. Yüksek sadakat ve döküm yapılandırılmış hidrojel gelen onun hızlı elüsyon bir maske ya da sık sık taşbaskı yöntemleri gerekli olduğu gibi bir damga kullanmadan farklı geometri ile kalıp oluşturmak için hızlı ve esnek bir yöntem yapar ile kurban kalıp baskı kombinasyonu. Dökülmüş yapısal hidrojel daha da düşük viskozite nedeniyle ekstrüzyon baskı için uygun değildir başka bir malzeme ile doldurulabilir. Bu bizim durumumuzda bir düşük viskoziteli aljinat metakrilat çözümdür. Burada bir ayağı dizinin örneğinde hidrojel desenlendirme için thermoresponsive ters kurban kalıp yöntem mevcut.
Burada, ilk kez, mevcut, hızlı bir şekilde bağlı olarak ~ 20 ° C arasında poloksamer edilen jel-sol geçiş için soğuk suyla yıkandı, olabilir, bir geçici kalıp için bir thermoresponsive polimerin kullanılması Sürecin hızı yeterli çözünürlüğe sahip basılamaz biopolimer yapıların hızlı oluşturma için Poloksamer ilginç hale getirir. Burada anlatılan teknik, bir hidrojel içinde ya da daha önce bir başka malzeme 35 için rapor edildiği gibi mikroakışkan kanallarının oluş…
The authors have nothing to disclose.
Biz bioprinter ile yardım için Deborah Studer teşekkür ederim.
Iş hibe anlaşması n kapsamında Avrupa Birliği Yedinci Çerçeve Programı (FP7/2007-2013) ° NMP4-SL-2009-229292 tarafından finanse edildi.
REAGENTS | |||
Poloxamer (Pluronic F127) | Sigma | P2443 | |
PBS | Invitrogen | 10010-015 | |
CAD software | regenHU | BioCAD | |
Alginate methacrylate | Innovent e.V Technologieentwicklung Jena | Synthesized by Innovent for the FP7 Project Nr NMP4-SL-2009-229292 | |
Fibrinogen From Human Plasma, Alexa Fluor 488 Conjugate | Invitrogen | F13191 | |
Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) | Innovent e.V Technologieentwicklung Jena | Synthesized by Innovent for the FP7 Project Nr NMP4-SL-2009-229292 | |
Agarose | Lonza | 50004 | |
EQUIPMENT | |||
Bioprinter | regenHU | Biofactory | |
Valve | regenHU | 300 μm Nozzel Diameter | |
Needle | regenHU | 150 μm Inner Diameter | |
Zeiss Axioobserver with ApoTome | Zeiss | ||
UV Light Source | UVP | Blak-Ray B-100AP High Intensity UV Lamp | 100 W |