Gram-negatif bakterilerin lipopolisakarit (LPS) lipid A alanı izolasyonu ve karakterize edilmesi, hücre yüzeyi antibiyotik direnç mekanizmaları göre, bakterinin yaşamda kalması ve spor ve nasıl kimyasal olarak çeşitli lipit A moleküler türün farklı olarak ana doğal immün yanıtları modüle fikir verir.
Lipopolisakarid (LPS) dış zar iki tabakalı dış yaprakçıkta biriken gram-negatif bakterilerin en büyük hücre yüzey molekülüdür. LPS üç sahaya bölünebilir: distal O-polisakarit, çekirdek oligosakkarit ve lipid, bir lipit içeren bir etki moleküler türleri ve 3-deoksi-D-manno-okt-2-ulosonic asit kalıntıları (Kdo). Lipid A etki bakteriyel hücre hayatta kalması için gerekli olan tek bileşendir. Sentezi takiben lipid A kimyasal olarak antibiyotik bileşiklere karşı direncini arttırma ve ana doğuştan gelen bağışıklık tepkisinin aracılar tarafından tanınması kaçınmak için, bu tür pH ve sıcaklık gibi çevresel strese cevap olarak modifiye edilir. Aşağıdaki protokol, gram-negatif bakterilerin lipid A'nın küçük ve büyük ölçekli izolasyon detayı. İzole edilen malzeme, daha sonra, kimyasal, ince tabaka kromatografisi (TLC) veya kütle spektrometrisi (MS) ile karakterize edilir. Buna ek olarak, F lazer desorpsiyon / iyonizasyon süresi matris destekliışığı (MALDI-TOF) MS, aynı zamanda Çarpışmanın neden olduğu ayırma (CID) bağlanmış elektrosprey iyonizasyon (ESI) ve yeni kullanılan ultraviyole Fotodissosiasyon (UVPD) yöntemleri kullanılarak lipid A moleküler türler analiz etmek için tandem MS protokolleri açıklanmıştır. Bizim MS protokolleri benzersiz veya yeni kimyasal modifikasyon içeren lipid A molekülleri karakterizasyonu için çok önemlidir, kimyasal yapının, şüphe götürmez belirlenmesi için izin verir. Ayrıca, TLC ile analiz için bakteriyel hücrelerden lipid A'nın radyoizotopik etiketleme, ve daha sonra izolasyon, tarif etmektedir. MS tabanlı protokol ile karşılaştırıldığında, TLC bir daha ekonomik ve hızlı bir karakterizasyonu yöntem sağlar, ancak açık bir şekilde bilinen bir kimyasal yapıya standartlarının kullanımı olmayan bir kimyasal yapıları lipid atamak için kullanılamaz. Son yirmi yılda lipid A izolasyonu ve karakterizasyonu gram-negatif bakteriler, antibiyotik direnci mekanizmalarının fizyolojisinin anlayışımızı geliştirdik ki çok heyecan verici keşiflere yol açmıştırmesafe, insan doğuştan gelen bağışıklık tepkisi ve antibakteriyel bileşiklerin geliştirilmesinde bir çok yeni hedefler sağlamıştır.
Lipopolisakarid (LPS) neredeyse tüm gram-negatif bakterilerin en büyük dış yüzey molekülü olan ve üç molekül etki oluşmaktadır: merkezden uzak bir O-antijen polisakarit, çekirdek oligosakkarit ve zara bağlı lipid dış yaprakçıkta biriken bir etki dış zar iki tabakalı 1,2. Lipid A alanı, lipid A yumuşak asit hidrolizi 1 üzerine LPS'nin kloroform çözünür bölümü olarak tanımlanabilir 3-deoksi-D-manno-okt-2-ulosonic (Kdo) artıkları ve bir lipit A moleküler türün oluşmaktadır 2. Model organizma Escherichia coli (E. coli), 1,2 gözlenen büyük lipid A türleri ile tutarlıdır; standart lipid A molekül kimyasal heksa-asilatlanmış ve bis-fosforile edilmiş olan bir omurga diglucosamine olarak tanımlanabilir. Gram-negatif bakteriler boyunca muhafaza edilmiş dokuz kurucu olarak ifade edilen genler, lipid üretiminde bir alanı (Şekil 1), 1,2 sorumludur. Bir çok bakteri lipid A 3 daha başka kimyasal modifikasyonu katılma filogenetik koruma derecesi değişebilir genlerin ek dizi vardır. Defosforilasyon, asil zincirleri çıkarılması ve amino şekerler (örneğin amino-arabinoz) ve / veya fosfoetanolamin gibi kimyasal kısımların ve buna ek olarak en sık gözlemlenen etkinlikleri ve (Şekil 1) bulunmaktadır. Lipid A modifikasyonu sorumlu enzimlerin çoğu doğrudan bu iki değerli katyonları gibi tabiata ait sinyallerle aktive edilir, ya da sentezleme, iki bileşenli tepki düzenleyici sistemler 3 düzenlenir.
Host doğuştan gelen bağışıklık sistemi tarafından lipid A türlerin tanınması Toll-benzeri reseptör 4/myeloid farklılaşma faktörü 2 (TLR4/MD2) co-reseptör 4 aracılık eder. MD2 ve lipid A asil zincirleri, aynı zamanda, TLR4 ve lipid A 1 ve 4 ', fosfat grupları dudağın güçlü bir ilişki teşvik arasında var olan hidrofobik kuvvetlerTLR4/MD2, 4,5 ile kimliği bir. Asilasyon durum ya da lipid A negatif yük etki TLR4/MD2 göre lipid değiştirmek modifikasyonlar A tanıma ve doğal bağışıklık yanıtının uyarılması alt NF-KB ve örneğin TNFa ve IL1-β, 6,7 enflamasyon medyatörleri harekete geçiriciler kullanılmaktadır. Lipid A'nın negatif şarjının maskelenmesini modifikasyonları da hücre yüzeyleri 3,8 gram-negatif bakteri bağlanmasını katyonik antimikrobiyal peptitler engeller. Birçok lipid A modifikasyon örneğin, insan ev sahibi içinde veya ekolojik bir niş gibi özel çevre koşulları altında, bakteri sağlığını arttırmak için öne sürülmüştür. Bu nedenle birçok modifikasyon enzimleri antimikrobiyal bileşiklerin rasyonel gelişme çekici hedeflerdir. Lipid A yapılarının kimyasal çeşitliliği, organizma ve / veya çevreye ve bu çeşitli yapıların biyolojik etkileri ile ilgili olarak lipid A'nın yapısal karakterizasyonu t önemli bir çaba yapmakO gram-negatif bakterilerin çalışma.
Bütün bakterilerden lipid A molekülleri izolasyonu nihai saflaştırma prosedürü 9-11 ardından bakteriyel hücre yüzeyinden LPS'nin çıkarma, lipit A serbest bırakmak için bir hidrolitik aşamasını içerir. En sık atıf LPS ekstraksiyon prosedürü ilk Westphal ve Jann 10 tarafından tanıtılan, sıcak-fenol su çıkarma işlemdir. Bütün kimyasal olarak ekstre LPS lipid A'nın uzak glukozamin şeker (Şekil 1) 6'-hidroksil KDO ayıran hafif asit hidrolize tabi sonra. Çok sayıda tuzaklar yüksek bir tehlike reaktifin kullanılması da dahil olmak üzere, sıcak-fenol su prosedürü için mevcut ko-ekstre edilmiş nükleik asitler ve proteinler, ve birkaç gün indirgeme için ihtiyaç protokolü 10 tamamlamak için gereklidir.
İlk Caroff ve Raetz 12,13 tarafından geliştirilen Bizim laboratuvar ayrıca lipid A'nın çıkarma ve izole geliştirdi. Sıcak-fenol su işlemleri ile karşılaştırıldığında, burada sunulan yöntem daha hızlı ve daha verimli ve 5 ml birden litre kültür hacimleri geniş bir aralıkta. Ayrıca, sıcak fenol su ekstresini aksine, bizim yöntem lipit A türlerin optimal iyileşme sağlayan, LPS kaba veya pürüzsüz türleri için seçmez. Protokolde, bütün bir bakteri hücrelerinin kimyasal liziz LPS, santrifüjle topaklar haline edilebilir bir kloroform, metanol ve sudan oluşan bir karışımı kullanılarak gerçekleştirilir. Hafif asit hidrolize ve solvent ekstraksiyon (Bligh-Dyer) içinde bir arada kovalent bağlı polisakarit lipit A serbest bırakmak için kullanılır. Bligh ve Dyer bir yöntem ilk olarak 14, dokular, hayvan ve bitki çeşitli lipid türlerin çıkarılması için uygulanan bu son adımda ayırma lipid A'dan hidrolize polisakarit ayırmak için burada modifiye edilmiş, kloroform çözünür lipidler seçici bir alt organik bir şekilde bölünmezler aşaması. Bundan başka, lipid A saflaştırılması için ters fazlı ya daAnyonik değiştirme kolon kromatografisi 12 kullanılabilir.
Tüm hücrelerden lipid A türlerinin izole edildikten sonra, analitik bir dizi yöntem bu NMR ve TLC ve MS-esaslı analizi gibi izole edilmiş malzemenin kimyasal yapısını karakterize etmek için kullanılabilir. NMR tahribatsız yapısal açıklama için izin verir, ve glikosidik bağlantıları, asil zinciri pozisyonların kesin atama ve amino-arabinozun veya fosfoetanolamin 15-17 gibi lipit A değişiklikler için ek siteler ödevle ilgili yapısal ayrıntı sağlar. Lipid A'nın NMR analizi eden protokol içinde ele değildir, fakat başka 15,16 yeterince tarif edilmiştir. Hızlı analiz için TLC yöntemler sıkça kullanılır dayalı, ama ince kimyasal yapısına ilişkin doğrudan bilgi sağlamak için başarısız. MS temel protokoller lipid A yapıları 18,19 karakterize etmek için en çok kullanılan bir yöntemdir. Matrix ilişkili lazer desorpsiyon iyonizasyon (MALDI)-MS genellikle başlangıçta sağlam lipit A türlerini araştırmak için kullanılır. Tek yüklü iyonların daha analit eden ekstraksiyon prosedürlere göre hazırlanmıştır oluşturulur. Daha ince yapısal analiz gerekli olduğu gibi, MS / MS tabanlı yöntemler MALDI-MS'den daha bilgilendirici kanıtlamak. Yapısal bilgi ürün iyonları 18,20,21 oluşturmak için, (ESI) bir ön-madde iyonları Çarpışmanın neden olduğu ayırma (CID) ya da mor ötesi Fotodissosiasyon (UVPD) ile daha da parçalanmış olan, tek başına veya çok yüklü lipid iyonizasyon elektrosprey Akuple. Bir ön-madde iyonları lipid Nötr kaybı ürünler ayrıca sık sık yapısal bilgileri ve ek bir tabaka sağlayan ESI-MS sırasında oluşturulur.
Tandem kütle spektrometrisi (MS / MS) lipid A yapıların açıklanması için vazgeçilmez ve çok yönlü bir yöntem olduğu kanıtlanmıştır. MS / MS sırasında, ön-madde iyonları iyon yapısını aydınlatmak için kullanılabilecek bir tanı parçalanma desen vermek üzere aktive olur. En yaygın olarak available MS / MS metodu olup CID. Bu yöntem, ayrışma yol açar enerji birikimi ile sonuçlanır, bir atıl gaz ile, hedef seçilen haberci iyon çarpışmaları yolu ile parçası iyonlar üretir. CID bakteri türlerinin 22-33 geniş bir yelpazesi için bir lipid yapının atama önemli bir araç olduğunu kanıtlamıştır.
CID en evrensel olarak uygulanan MS / MS metodu da, bu ürün, iyonların sınırlı dizisi oluşturur. 193 nm UVPD alternatif ve tamamlayıcı bir MS / MS yöntemi. Bu yöntem iyon ışın tedavisi için bir lazer kullanmaktadır ve fotonların emme iyonları ve sonraki ayrışma enerjilendirilmesi ile sonuçlanır. Bu yüksek enerji, MS / MS tekniği CID daha ürün iyonların daha çeşitli bir dizi üretir ve böylece daha bilgilendirici parçalanma desen sağlar. Özellikle, UVPD glukan, amin, asil ve CC bağlantılı tahviller 18,21,34 de bölünmelere dayalı lipid A türlerde ince değişiklikler hakkında bilgi verir.
Bu protokolde, bakterilerin bütün hücrelerden lipid A türlerin izole ayrıntılı ve kimyasal olarak, bu izole edilmiş malzemenin karakterize etmek için TLC ya da MS-analitik yöntemler tarif etmişlerdir. Tandem kütle spektrometresi biyolojik bileşiklerin de novo yapısal karakterizasyonu için güçlü bir stratejidir, ve doğada gözlenen lipid A molekülleri yelpazesine kimyasal karakterizasyonu için paha biçilemez. CID ve UVPD lipid A molekülleri için anahtar parmak izi sağlayan ürün iyonlar…
The authors have nothing to disclose.
Bu çalışma aynı zamanda JSB için R01GM103655 hibe Welch Vakfı Hibe F1155 ve NIH tarafından desteklenen Sağlık (NIH) National Institutes Bağış AI064184 ve AI76322 tarafından ve MST Araştırma Ordu Araştırma Bürosu Grant 61789-MA-MUR tarafından desteklenen
Name of Reagent/Material | Company | Catalog Number | Comments |
Chloroform | Thermo Fisher Scientific | C607 | HPLC Grade |
Methanol | Thermo Fisher Scientific | A452 | HPLC Grade |
Teflon FEP Centrifuge Bottles | Thermo Fisher Scientific | 05-562-21 | |
Silica Gel 60 TLC Plates | EMD Biosciences | 5626-6 | |
Grade No. 3MM Chromatography Paper | Whatman | 3030700 | |
Orbitrap Elite | Thermo Fisher Scientific | ||
Mass Spectrometer | |||
ExciStar XS Excimer Lasrer | Coherent Inc. | ||
PicoTip Nanospray ESI emitters | New Obectives | ≥ 30 μm to reduce clogging | |
Model 505 Pulse/Delay Generator | Berkeley Nucleonics Corporation | ||
Hot Plate Thermoylne 2200 | Barnstead/Thermolyne | HPA2235MQ | |
16×125 mm GPI 15-415 Threaded Disposable Borosilicate Culture Tubes | Corning Pyrex | 99449-16X | |
Reusable Threaded PTFE screw caps GPI 45-415 | Corning | 9999-152 | |
Personal Molecular Imager System (phosphorimager) | BioRad | 170-9400 | |
Autoradiography Cassette | Thermo Fisher Scientific | FBCS810 | |
Phosphorscreen SO230 | Kodak | ||
Peptide Mass Standards Kit | Sequazyme | P2-3143-00 | |
Sonifier S250-A | Branson | 101063196 | |
1.5 ml 12×32 mm Tapered Base Screw Thread Vial | Thermo Fisher Scientific | C4000-V1 |