Summary

原子探针层析成像研究在Cu(铟,镓)硒<sub> 2</sub>晶界

Published: April 22, 2013
doi:

Summary

在这项工作中,我们描述了使用的原子探针层析成像技术研究中的CIGS型太阳能电池的吸收层的晶粒边界。这里也提出一种新颖的方法来准备包含所需的晶界结构与已知的原子探针提示。

Abstract

与已有技术相比,原子探针断层扫描是一个独特的技术,能够在纳米级,并在三维空间中的化学特性的内部接口。事实上,APT具有高灵敏度(ppm级)和高空间分辨率(子纳米)。

在这里做了相当大的努力准备包含所需的晶界结构与已知的APT尖。事实上,特定于站点的样品制备使用聚焦离子束,电子背散射衍射和透射电子显微镜相结合,提出了这项工作。这种方法允许选择晶界已知的结构和位置,铜(铟,镓)硒薄膜薄膜加以研究,原子探针断层扫描。

最后,我们讨论了使用原子探针断层扫描技术来研究晶界(铜铟,镓)硒薄膜太阳能电池的优点和缺点。

Introduction

超过二十年的,因为他们的效率高,抗辐射,长期稳定,一直在开发基于铜矿结构的化合物半导体沉积Cu(In,Ga)的硒(CIGS)作为吸收材料的薄膜太阳能电池性能和低的生产成本1-3。可以制造这些太阳能电池中,只有很少的材料消耗,由于CIGS吸收层的良好的光学性能,即,直接带隙和高吸收系数1,2。足以产生高的光吸收体膜的厚度只有几微米。由于电极的光生电荷载流子的扩散路径比较短,CIGS吸收体,可以以多晶形式。铜的最大效率(铟,镓)硒(CIGS)太阳能电池迄今取得的20.4%,这是所有薄膜太阳能电池中的最高值。

ove_content“>为进一步建立的CIGS薄膜光伏技术,既降低生产成本和提高太阳能电池的效率是必不可少的,后者是强烈地依赖于CIGS吸收层的微观结构和化学组成的内部接口,在吸收塔内的特定的晶界(GBS),发挥了举足轻重的作用,因为它们可能影响运输的光生载流子。

CIGS太阳能电池方面尚未解决的主要问题之一是的良性性质CIGS GBS, 多晶的CIGS吸收薄膜产量优秀的电池效率,尽管高密度的晶界和晶格缺陷。

几位作者研究金紫荆星章CIGS薄膜太阳能级就其电学性能5,6,性格和取向差7-9以及杂质分离10-13。但是,没有明确的联系这些properti之间ES可以成立至今。特别是,有相当大的缺乏有关本地的化学组成和晶界的杂质含量。

在过去的二十年中,原子探针断层扫描(APT)已成为一个有前途的纳米分析技术14-17。直到最近,APT的太阳能电池的研究已经在很大程度上限制在样品制备过程中的困难,并使用传统的脉冲电压的原子探针分析半导体材料的能力有限。这些限制已经在很大程度上克服的发展“升出法的基础上,聚焦离子束(FIB)铣18台 ,并引进脉冲激光APT 16。已经发表了多篇论文关于APT表征CIGS太阳能电池19-23,这是大力鼓励作进一步调查。

本文给出了如何学习内部I指引nterfaces在铜铟镓硒薄膜太阳能电池由原子探针层析成像技术。

Protocol

1。 CIGS层沉积溅射沉积500纳米到3mm厚的钠钙玻璃基板(SLG),钼(背接触层)。 合作蒸发2微米的铜铟镓硒联多级CIGS工艺24。沫背接触层上沉积所得到的铜铟镓硒是图1中所示。 测量CIGS层的组成组合物,用X-射线荧光光谱仪(XRF)。将得到的铜铟镓硒组合物示于表1。 2。网站特定的样品制备APT分析剪切的TEM沫?…

Representative Results

图3示出的侧视图(XZ片)元素的地图随机高角度GB(HAGB)28.5° – <511>通过位点特异性制备方法在图2中选择的幼崽 。使用APT,共分离的钠,钾,和O在CIGS HAGB的直接映射。最有可能在这些杂质扩散到吸收层的沉积过程中在〜600℃的CIGS层的SLG衬底 图4a示出了铜,地,镓和硒的浓度分布横跨GB 如图3所示。铜,铟,镓,…

Discussion

在当前的工作中,我们提出了铜铟镓硒的随机HAGB中,化合物半导体材料,用于光伏应用APT结果。此外,我们还表明,APT结合互补的技术,如EBSD和TEM是一个功能强大的工具来阐明的CIGS太阳能电池的结构组成性能关系。不幸的是,APT和EDX / EELS在TEM之间的相关性是不可能的,因为首先,EDX / EELS有没有足够的分辨率来检测低Na和O浓度晶界其次,EDX / EELS是不敏感的所有元素,尤其是娜和O

<p class="jove_c…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作是由德国研究基金会(DFG)(CH 943/2-1合同)成立。笔者想感谢沃尔夫冈迪图斯和斯特凡Paetel的Zentrum酒店献给Sonnenenergie和Wasserstoff-Forschung巴登 – 符腾堡州准备对这项工作的CIGS吸收层。

Referências

  1. Stanbery, B. J. Copper indium selenides and related materials for photovoltaic devices. Crit. Rev. Solid State. 27, 73-117 (2002).
  2. Kemell, M., Ritala, M., Leskelä, M. Thin film deposition methods for CuInSe2 solar cells. Crit. Rev. Solid State. 30, 1-31 (2005).
  3. Kazmerski, L. L. Solar photovoltaics R&D at the tipping point: a 2005 technology overview. J. Electron Spectrosc. 150 (2-3), 105-135 (2006).
  4. Sadewasser, S., Glatzel, T., Schuler, S., Nishiwaki, S., Kaigawa, R., Lux-Steiner, M. C. Kelvin probe force microscopy for the nano scale characterization of chalcopyrite solar cell materials and devices. Thin Solid Films. 431-432, 257-261 (2003).
  5. Jiang, C. S., Noufi, R., AbuShama, J. A., Ramanathan, K., Moutinho, H. R., Pankow, J., Al-Jassim, M. M. Local built-in potential on grain boundary of Cu(In,Ga)Se2 thin-films. Appl. Phys. Lett. 84, 3477-1-3477-3 (2004).
  6. Abou-Ras, D., Koch, C. T., Küstner, V., van Aken, P. A., Jahn, U., Contreras, M. A., Caballero, R., Kaufmann, C. A., Scheer, R., Unold, T., Schock, H. W. Grain-boundary types in chalcopyrite-type thin films and their correlations with film texture and electrical properties. Thin Solid Films. 517, 2545-2549 (2009).
  7. Nichterwitz, M., Abou-Ras, D., Sakurai, K., Bundesmann, J., Unold, T., Scheer, R., Schock, H. W. Influence of grain boundaries on current collection in Cu(In,Ga)Se2 thin-film solar cells. Thin Solid Films. 517, 2554-2557 (2009).
  8. Abou-Ras, D., Schorr, S., Schock, H. W. Grain sizes and grain boundaries in chalcopyrite-type thin films. J. Appl. Cryst. 40, 841-848 (2007).
  9. Niles, D. W., Al-Jassim, M., Ramanathan, K. Direct observation of Na and O impurities at grain surfaces of CuInSe2 thin films. J. Vac. Sci. Technol. A. 17, 291-296 (1998).
  10. Rockett, A., Granath, K., Asher, S., Al Jassim, M. M., Hasoon, F., Matson, R., Basol, B., Kapur, V., Britt, J. S., Gillespie, T., Marshall, C. Na incorporation in Mo and CuInSe2 from production processes. Sol. Energy. 59, 255-264 (1999).
  11. Heske, C., Eich, D., Fink, R., Umbach, E., Kakar, S., van Buuren, T., Bostedt, C., Terminello, L. J., Grush, M. M., Callcott, T. A., Himpsel, F. J., Ederer, D. L., Perera, R. C. C., Riedl, W., Karg, F. Localization of Na impurities at the buried CdS/Cu(In, Ga)Se2 heterojunction. Appl. Phys. Lett. 75, 2082-2084 (1999).
  12. Braunger, D., Hariskos, D., Bilger, G., Rau, U., Schock, H. W. Influence of Na on the growth of polycrystalline Cu(In,Ga)Se2 thin films. Thin Solid Films. 361, 161-166 (2000).
  13. Cerezo, A., Godfrey, T. J., Sijbrandij, S. J., Smith, G. D. W., Warren, P. J. Performance of an energy-compensated three-dimensional atom probe. Rev. Sci. Instrum. 69, 49-58 .
  14. Blavette, D., Bostel, A., Sarrau, J. M., Deconihout, B., Menand, A. An atom-probe for three dimensional tomography. Nature. 363, 432-435 (1993).
  15. Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D., Deconihout, B. Design of a femtosecond laser assisted tomographic atom probe. Rev. Sci. Instrum. 77, 043705-1-043705-8 (2006).
  16. Kelly, T. F., Miller, M. K. Atom probe tomography. Rev. Sci. Instrum. 78, 031101-1-031101-20 (2007).
  17. Thompson, K., Lawrence, D., Larson, D. J., Olson, J. D., Kelly, T. F., Gorman, B. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy. 107 (2-3), 131-139 (2007).
  18. Cadel, E., Barreau, N., Kessler, J., Pareige, P. Atom probe study of sodium distribution in polycristalline Cu(In,Ga)Se2 thin film. Acta Material. 58, 2634-2637 (2010).
  19. Schlesiger, R., Oberdorfer, C., Würz, R., Greiwe, G., Stender, P., Artmeier, M., Pelka, P., Spaleck, F., Schmitz, G. Design of a laser-assisted tomographic atom probe at Münster University. Rev. Sci. Instr. 81, 043703 (2010).
  20. Cojocaru-Mirédin, O., Choi, P., Abou-Ras, D., Schmidt, S. S., Caballero, R., Raabe, D. Characterization of grain boundaries in Cu(In,Ga)Se2 films using atom-probe tomography. IEEE J. Photovolt. 1 (2), 207-212 (2011).
  21. Cojocaru-Mirédin, O., Choi, P., Wuerz, R., Raabe, D. Atomic-scale characterization of the CdS/CuInSe2 interface in thin-film solar cells. Appl. Phys. Lett. 98, 103504-1-103504-3 (2011).
  22. Couzinie-Devy, F., Cadel, E., Barreau, N., Arzel, L., Pareige, P. Atom probe study of Cu-poor to Cu-rich transition during Cu(In,Ga)Se2 growth. Appl. Phys. Lett. 99, 232108-1-232108-3 (2011).
  23. Voorwinden, G., Jackson, P., Kniese, R., Powalla, M. In-line Cu(In,Ga)Se2 co-evaporation process on 30 cm x 30 cm substrates with multiple deposition stages. , 2115-2118 (2007).
  24. Miller, M. K., Russell, K. F., Thompson, K., Alvis, R., Larson, D. J. Review of atom probe FIB-based specimen preparation methods. Microscopy Microanal. 13 (6), 428-436 (2007).
  25. J, D. Modeling image distortions in 3DAP. Microscopy and Microanalysis. 10 (3), 384-390 (2008).
  26. Kellog, G. L. Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J. Appl. Phys. 52, 5320 (1981).
  27. . . IVASTM 3.6.2 User Guide 2012. , (2012).
  28. Persson, C., Zunger, A. Compositionally induced valence-band offset at the grain boundary of polycrystalline chalcopyrites creates a hole barrier. Appl. Phys. Lett. 87, 211904-1-211904-3 (2005).
  29. Zhang, S. B., Wei, S. -. H., Zunger, A., Katayama-Yoshida, H. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B. 57, 9642-9656 (1998).
  30. Cahn, J. W., Johnson, W. C., Blakely, J. M. . Interfacial Segregation. , 3-23 (1979).
  31. Miller, M. K., Jayaram, R. Some factors affecting analysis in atom probe. Surf. Sci. 266, 458-462 (1992).
  32. Wuerz, R., Eicke, A., Kessler, F., Paetel, S., Efimenko, S., Schlegel, C. CIGS thin-film solar cells and modules on enamelled steel substrates. Sol. Energy. 100, 132-137 (2012).
  33. De Geuser, F., Lefebvre, W., Danoix, F., Vurpillot, F., Forbord, B., Blavette, D. An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surf. Interf. Anal. 39, 268-272 (2007).
  34. Kingham, D. R. The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf. Sci. 116, 273-301 (1982).
  35. Letellier, L. . Etude des joints de grains et interphases dans les superalliages Astroloy par microscopie electronique et tomographie atomique [dissertation]. , (1994).
  36. Hoummada, I., Mangelinck, K., Chow, D., Lee, J., Bernardini, Original methods for diffusion measurements in polycrystalline thin-films. Defect and Diffusion Forum. 322, 129-150 (2012).
check_url/pt/50376?article_type=t

Play Video

Citar este artigo
Cojocaru-Mirédin, O., Schwarz, T., Choi, P., Herbig, M., Wuerz, R., Raabe, D. Atom Probe Tomography Studies on the Cu(In,Ga)Se2 Grain Boundaries. J. Vis. Exp. (74), e50376, doi:10.3791/50376 (2013).

View Video