Summary

小鼠脑皮层星形胶质细胞的分离和培养

Published: January 19, 2013
doi:

Summary

星形胶质细胞被确认为是正常的大脑发育和功能,以及中枢神经系统的修复是必不可少的基本​​生物过程的多功能细胞参与。在这里,我们提出了一个快速的过程,以获得纯净的小鼠星形胶质细胞培养研究本类主要的中枢神经系统的细胞生物学。

Abstract

星形胶质细胞是哺乳动物大脑中的细胞类型丰富,但仍有许多工作有待了解它们的分子和功能特性。星形胶质细胞在体外培养系统可以用来详细研究这些神经胶质细胞的生物学功能。此视频协议显示了如何获得纯鼠标幼崽的混合皮层细胞的分离和培养的星形胶质细胞。该方法是基于上没有存活的神经元,星形胶质细胞,少突胶质细胞,小胶质细胞,三个主要的神经胶质细胞种群的中枢神经系统的,在培养和分离。在第一天的文化代表图像显示的混合细胞群的存在,并表示时间点,当星形胶质细胞的汇合和小胶质细胞和少突胶质细胞应分开。此外,我们表现出纯度和完善培养的星形胶质细胞,用免疫细胞化学染色星形胶质细胞形态和新近被描述的星形胶质细胞的标记。这种文化系统可以很容易地获得纯星形胶质细胞和星形胶质细胞条件培养液对星形胶质细胞生物学研究的各个方面。

Introduction

星形胶质细胞是中枢神经系统(CNS)中的一个非常丰富的细胞类型。在小鼠和大鼠皮质星形胶质细胞对神经元的比例是1:3,而每个神经元有1.4星形胶质细胞在人脑皮层1。在最近几年急剧增加星形胶质细胞功能的兴趣。一个关键功能的星形胶质细胞是神经元2,3结构和代谢支持的作用。新发现的星形胶质细胞的作用涵盖了广泛的功能。这些措施包括4-6在开发过程中,引导轴突和若干神经母细胞的迁移功能的突触传递,突触强度和信息处理的神经回路7-9,形成血脑屏障(BBB)的角色,在10和完整性11-13调节脑血管音14。的另一大特点是他们的星形胶质细胞对损伤的反应。在病理条件astrocyt的上课成为反应性和进一步上调表达的中间丝胶质纤维酸性蛋白(GFAP)和抑制细胞外基质(ECM)蛋白15,16。划定的健康组织的损伤部位形成胶质瘢痕,主要由星形胶质细胞分泌的细胞外基质蛋白,硫酸软骨素蛋白多糖(CSPG)家庭星形胶质细胞反应性增生,抑制轴突再生的主要因素,中枢神经系统损伤后15日至17日

星形胶质细胞在胚胎发育晚期和产后早期生命起源于放射状胶质细胞(RG)。规范已发生后,星形胶质细胞,星形胶质细胞的前体迁移到它们的最终位置,在那里他们开始终末分化过程中, 在体内 ,星形胶质细胞似乎是成熟的出生后三至四个星期,如所指示的典型形态18,19。 RG细胞亚群转化为脑室下区星形胶质细胞(B型细胞)。乙超视距,RG型和B细胞的功能在开发过程中的成人星形胶质细胞的神经干细胞(NS​​Cs)。喜欢的星形胶质细胞,RG和B型细胞也表达星形胶质细胞特异性的谷氨酸转运体(GLAST),脑脂质结合的蛋白(BLBP)的,和GFAP,表明这些标记可以不专门用于专门标记成人星形胶质细胞。相反成人的实质星形胶质细胞,没有分裂的健康的大脑,RG和B型细胞表现出干细胞的潜力,如自我更新的能力。星形胶质细胞失调有牵连的许多病症,包括老年痴呆症的20,21,亨廷顿氏病22,帕金森氏病23,Rett综合征24日和亚历山大的疾病25。此外,星形胶质细胞反应所有侮辱的中枢神经系统,导致星形胶质细胞活化和星形胶质细胞胶质瘢痕的形成16,26。星形胶质细胞胶质瘢痕形成以下大脑TRAUMA或脊髓损伤被认为是主要的屏障,防止神经细胞再生的15。

可靠的方法来隔离和保持纯化的细胞群的发展一直是我们了解神经系统的关键。创业的工作由麦卡锡和Vellis使调查人员,准备近纯培养的星形胶质细胞从新生大鼠组织27。关于使用这种方法,在这里稍加修改,以隔离小鼠脑皮层星形胶质细胞星形胶质细胞生物学已学到很多东西。补充体内研究 ,星形胶质细胞以及空调介质使用所描述的体外培养,是宝贵的工具,以进一步深入了解星形胶质细胞的功能。

Protocol

1。混合皮层细胞的分离和电镀混合皮层星形胶质细胞培养细胞分离,可以使用P1到P4鼠标幼崽。为了实现适当的星形胶质细胞的密度,它是必要的使用4鼠标小狗皮质每T75组织培养烧瓶中。因此,以下协议中的卷是计算一个单元使用4次鼠标幼崽的准备。 开始解剖过程之前,prewarm 30毫升的星形胶质细胞的培养基(DMEM,高葡萄糖+ 10%热灭活的牛胎儿血清+ 1%青霉素/链霉?…

Representative Results

当完整的小鼠脑组织( 图1A),小脑和嗅球必须要除去( 图1B)的隔离。小心地取出( 图1E)的小鼠脑干个别皮层( 图1D)(图1C)和脑膜皮层剥离。脑膜的是明显的由脑膜动脉系统的和不完整的去除污染由脑膜细胞和成纤维细胞,星形胶质细胞的最终文化结果。 电镀混合皮层细胞悬浮液后,某些星形胶质细胞已经附加到培?…

Discussion

这里介绍的方法是基于从啮齿动物新生儿的大脑,于1980年27麦卡锡和德Vellis的原先所描述的星形胶质细胞培养制备。从出生P1到P4小鼠大脑皮质星形胶质细胞的分离和培养的方法,这里介绍的是速度快,产量纯星形胶质细胞是高度可重复性。这种技术可以很容易地转移到隔离来自其他物种的星形胶质细胞,如从大鼠或猪和由大脑的其他区域,如脊髓。而由麦卡锡和deVellis的方法,从新生儿?…

Declarações

The authors have nothing to disclose.

Acknowledgements

SS,联邦教育与研究部(BMBF 01 EO 0803),KB和欧盟委员会FP7格兰特PIRG08-GA-2010-276989,NEUREX,德国研究基金会资助SCHA 1442 /的Fazit基金会研究生奖学金的支持下3-1 CS有没有冲突的财务权益。

Materials

Name of working solution Company Catalogue number Final concentration
Astrocyte culture media
DMEM, high glucose Life Technologies 31966-021
FBS, heat-inactivated Life Technologies 10082-147 Final Concentration: 10%
Penicillin-Streptomycin Life Technologies 15140-122 Final Concentration: 1%
Solution for brain tissue digestion
HBSS Life Technologies 14170-088
2.5% Trypsin Life Technologies 15090-046 Final Concentration: 0.25%
Outro
70% (vol/vol) ethanol Roth 9065.2
Poly-D-Lysine Millipore A-003-E 50 μg/ml
Water PAA S15-012 cell culture grade
PBS PAA H15-002 cell culture grade
0.05% Trypsin-EDTA Life Technologies 25300-062
0.45 μm Sterile filter Sartorius 16555
3.5 cm petri dish BD Falcon 353001
15 ml Falcon tube BD Falcon 352096
50 ml Falcon tube BD Falcon 352070
75 cm2 Tissue culture flask BD Falcon 353136
Forceps, fine Dumont 2-1032; 2-1033 # 3c; # 5
Forceps, flat tip KLS Martin 12-120-11
13 cm surgical scissors Aesculap BC-140-R
Stereomicroscope Leica MZ7.5
Stereomicroscope + Camera Leica MZ16F; DFC320
Microscope + Camera Zeiss; Canon Primo Vert; PowerShot A650 IS
Centrifuge Eppendorf 5805000.017 Centrifuge5804R
Orbital Shaker Thermo Scientific SHKE 4450-1CE MaxQ 4450
Water bath Julabo SW20; 37 °C

Referências

  1. Nedergaard, M., Ransom, B., Goldman, S. A. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26, 523-530 (2003).
  2. Belanger, M., Allaman, I., Magistretti, P. J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14, 724-738 (2011).
  3. Allen, N. J., Barres, B. A. Neuroscience: Glia – more than just brain glue. Nature. 457, 675-677 (2009).
  4. Ballas, N., Lioy, D. T., Grunseich, C., Mandel, G. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat. Neurosci. 12, 311-317 (2009).
  5. Jacobs, S., Nathwani, M., Doering, L. C. Fragile X astrocytes induce developmental delays in dendrite maturation and synaptic protein expression. BMC Neurosci. 11, 132 (2010).
  6. Kaneko, N., et al. New neurons clear the path of astrocytic processes for their rapid migration in the adult brain. Neuron. 67, 213-223 (2010).
  7. Min, R., Nevian, T. Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat. Neurosci. , (2012).
  8. Eroglu, C., Barres, B. A. Regulation of synaptic connectivity by glia. Nature. 468, 223-231 (2010).
  9. Sasaki, T., Matsuki, N., Ikegaya, Y. Action-potential modulation during axonal conduction. Science. 331, 599-601 (2011).
  10. Bozoyan, L., Khlghatyan, J., Saghatelyan, A. Astrocytes control the development of the migration-promoting vasculature scaffold in the postnatal brain via VEGF signaling. J. Neurosci. 32, 1687-1704 .
  11. Alvarez, J. I., et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science. 334, 1727-1731 (2011).
  12. Abbott, N. J., Ronnback, L., Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41-53 (2006).
  13. Tao-Cheng, J. H., Nagy, Z., Brightman, M. W. Tight junctions of brain endothelium in vitro are enhanced by astroglia. J. Neurosci. 7, 3293-3299 (1987).
  14. Gordon, G. R., Choi, H. B., Rungta, R. L., Ellis-Davies, G. C., MacVicar, B. A. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature. 456, 745-749 (2008).
  15. Silver, J., Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146-156 (2004).
  16. Schachtrup, C., Moan, N. L. e., Passino, M. A., Akassoglou, K. Hepatic stellate cells and astrocytes: Stars of scar formation and tissue repair. Cell Cycle. 10, 1764-1771 (2011).
  17. Schachtrup, C., et al. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J. Neurosci. 30, 5843-5854 (2010).
  18. Bushong, E. A., Martone, M. E., Jones, Y. Z., Ellisman, M. H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183-192 (2002).
  19. Ogata, K., Kosaka, T. Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neurociência. 113, 221-233 (2002).
  20. Dabir, D. V., et al. Impaired glutamate transport in a mouse model of tau pathology in astrocytes. J. Neuroscience. 26, 644-654 (2006).
  21. Wisniewski, H. M., Wegiel, J. Spatial relationships between astrocytes and classical plaque components. Neurobiol. Aging. 12, 593-600 (1991).
  22. Shin, J. Y., et al. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J. Cell Biol. 171, 1001-1012 (2005).
  23. Wakabayashi, K., Hayashi, S., Yoshimoto, M., Kudo, H., Takahashi, H. NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol. 99, 14-20 (2000).
  24. Lioy, D. T., et al. A role for glia in the progression of Rett’s syndrome. Nature. 475, 497-500 (2011).
  25. Quinlan, R. A., Brenner, M., Goldman, J. E., Messing, A. GFAP and its role in Alexander disease. Exp. Cell Res. 313, 2077-2087 (2007).
  26. Beck, K., Schachtrup, C. Vascular damage in the central nervous system: a multifaceted role for vascular-derived TGF-beta. Cell Tissue Res. 347, 187-201 (2012).
  27. McCarthy, K. D., de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890-902 (1980).
  28. Siao, C. J., Tsirka, S. E. Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J. Neurosci. 22, 3352-3358 (2002).
  29. Armstrong, R. C. Isolation and characterization of immature oligodendrocyte lineage cells. Methods. 16, 282-292 (1998).
  30. Cahoy, J. D., et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264-278 (2008).
  31. Anthony, T. E., Heintz, N. The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects. J. Comp. Neurol. 500, 368-383 (2007).
  32. Skoff, R. P., Knapp, P. E. Division of astroblasts and oligodendroblasts in postnatal rodent brain: evidence for separate astrocyte and oligodendrocyte lineages. Glia. 4, 165-174 (1991).
  33. Molofsky, A. V., et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 26, 891-907 (2012).
  34. Zhang, Y., Barres, B. A. Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr. Opin. Neurobiol. 20, 588-594 (2010).
  35. Foo, L. C., et al. Development of a method for the purification and culture of rodent astrocytes. Neuron. 71, 799-811 (2011).
  36. Jungblut, M., et al. Isolation and characterization of living primary astroglial cells using the new GLAST-specific monoclonal antibody ACSA-1. Glia. 60, 894-907 (2012).

Play Video

Citar este artigo
Schildge, S., Bohrer, C., Beck, K., Schachtrup, C. Isolation and Culture of Mouse Cortical Astrocytes. J. Vis. Exp. (71), e50079, doi:10.3791/50079 (2013).

View Video