Summary

同时脑电图,实时测量的啮齿动物的大脑皮质中的神经元活动的乳酸浓度与Optogenetic的操作

Published: December 19, 2012
doi:

Summary

一个过程的描述,操纵大脑皮质锥体神经元的活动optogenetically而脑电图,肌电图,脑乳酸浓度监测。进行实验记录,电缆绳系小鼠,而他们自发的睡眠/觉醒周期。 optogenetic设备被组装在我们的实验室;记录设备是市售的。

Abstract

尽管大脑表示小于5质量%的身体时,它利用身体所利用的葡萄糖在休息1的约四分之一。非快速眼动睡眠(NREMS),睡眠时间的最大部分的功能​​是不确定的。然而,一个显着的特点NREMS是一个显着的减少的速率相对于觉醒2-4脑葡萄糖利用率。这与其他研究结果已广泛持有的信念,睡眠提供相关的脑代谢的功能。然而,仍有待澄清NREMS期间脑葡萄糖代谢的降低机制。

与的NREMS可能影响脑代谢率相关联的一种现象是慢波,在小于4赫兹的频率的振荡的发生,在脑波5,6。这些慢波在颅骨或大脑皮质表面的水平反映了检测相关的神经元去极化/状态和超极化/下的状态7之间振荡。在向下状态,细胞不发生动作电位到几百毫秒的间隔。后续动 ​​作电位的离子浓度梯度的恢复是一个重要的代谢负荷对细胞8,动作电位与NREMS在掉电状态的情况下可能会有助于减少代谢相关唤醒的。

为了要测试这个假设的关系,必须解决两个技术挑战。首先,它是必要的测量脑糖酵解代谢与脑EEG的动态反射的时间分辨率(即,超过秒,而不是分钟)。要做到这一点,我们测得的乳酸浓度,有氧糖酵解的产物,因此,在老鼠的大脑中的葡萄糖代谢率的读数。乳酸是采用基于乳酸氧化酶的实时传感器嵌入的额叶皮层。感测机构包括由乳酸氧化酶分子的层包围的铂 – 铱电极。由乳酸氧化酶的乳酸代谢产生的过氧化氢,其产生的电流中的铂 – 铱电极。因此,一个加速脑糖酵解提供乳酸氧化酶,然后被反射在增加的电流在检测电极中的底物浓度的增加。这是另外需要这些变量,而操纵大脑皮质的兴奋性,以找出这个变量的NREMS从其他方面来衡量。

我们设计了一个实验系统的神经元活动的同时测量通过大脑皮质神经元的活动的elecetroencephalogram,通过乳酸生物传感器的糖酵解流量测量,操作通过optogenetic激活的金字塔midal神经元。我们已经利用本系统之间的睡眠相关的脑电图波形和在大脑皮质的乳酸浓度的时刻到时刻动态文件的关系。该协议可能是有用的任何个人感兴趣,学习,在自由活动的啮齿动物,在脑电图能量大脑内的水平和细胞之间的关系测定的神经元活性。

Protocol

1。动物的外科下游 1。实验的主题使用小鼠的Tg(Thy1-COP4/eYFP)的的B6.Cg 18Gfng / J转线9; JAX应变#7612)或其他小鼠表达的蓝色光敏感的阳离子通道,Channelrhodopsin-2,在大脑皮质的神经元。应用到大脑皮质的B6.Cg-TG(Thy1-COP4/eYFP)的18Gfng / J,转基因株系的蓝色光会导致锥体神经元去极化,并进行动作电位9,10表达Channelrhodopsin-2。作为一个结果,锥?…

Representative Results

正如在图2中所示, 经历了自发的睡眠/唤醒状态转换,同时鼠标配备optogenetic刺激和乳酸/ EEG / EMG数据收集的脑电图,肌电图和脑乳酸浓度连续监测。目前在乳酸传感器增加了在低振幅脑电图的时期,期间,高振幅EEG下降。正如在图3中所示,两个通道的脑电图响应于optogenetic刺激交付的额叶皮层。 <img alt="…

Discussion

这里介绍的方法允许一个以前是不可能实现的时间尺度上测量大脑中的浓度之间的关系的睡眠和变化的糖酵解中间乳酸。动物自发唤醒,的NREMS和REMS之间的转换。此外,我们当动物接受这些转变可以申请optogenetic刺激。最新收集到的数据表明,自发和诱发波影响的乳酸氧化酶为基础的生物传感器的读出。

人们可以构建实验系统,类似于此处所述的设备和软件从其他来源。多导…

Declarações

The authors have nothing to disclose.

Acknowledgements

由国防部(国防高级研究计划局,青年教师奖,项目编号N66001-09-1-2117)和NINDS(R15NS070734)的研究。

Materials

Component Company Catalogue number Comments (optional)
BASi Mouse Guide Cannula Pinnacle Technology/BASi Inc 7032  
Lactate Biosensor Pinnacle Technology 7004  
Head Mount Pinnacle Technology 8402  
Sleep/Biosensor Recording system Pinnacle Technology 8400-K1-SL 2 EEG channels, 1 EMG channel, & 1 biosensor
Tethered Mouse in-vitro Calibration kit Pinnacle Technology 7000-K1-T  
Fiber Optic Guide Cannula Plastics One C312G 21 Gauge Guide Cannula
Dummy Cannula Plastics One C312DC 21 Gauge Dummy
Diamond Fiber Scribe Thorlabs S90W  
Fiber Connector Crimp Tool Thorlabs CT042  
Furcation Tubing Thorlabs FT030 03.0 mm
  Thorlabs T10S13 Max Dia. 0.012
Furcation Tube Stripper Thorlabs FTS3  
Bare Hard Cladding Multimode Fiber Thorlabs BFL37-200 200 μm Core, 0.37 NA
Wire Snips/Kevlar Shears Thorlabs T865  
Fiber Optic Epoxy Thorlabs F112  
Fiber Stripper Tool Thorlabs    
Glass Polishing Plate Thorlabs CTG913  
Rubber Polishing Pad Thorlabs NRS913  
Eye Loupe Thorlabs JEL10  
Kim Wipes Thorlabs KW32  
Compressed Air Thorlabs CA3  
Polishing Puck Thorlabs D50-xx  
Fiber Inspection scope Thorlabs CL-200  
Polishing Films Thorlabs LFG5P, LFG3P, LFG1P, LFG03P  
FC/PC connector end Thorlabs 30126G2-240 240 μm Bore, SS Ferrule
MC Stimulus Unit Multi-Channel Systems STG-4002  
MC Stimulus Software Multi-Channel Systems MC-Stimulus V 2.1.5  
Blue Laser CrystaLaser CL473-050-0  
Laser Power supply CrystaLaser CL2005  
Fiber Optic Rotary Joint Doric Lenses FRJ-v4  
      Table 2. Supplies and equipment.

Referências

  1. Magistretti, P., Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L., Squire, L. R. Brain Energy Metabolism. Fundamental Neuroscience. , 389-413 (1999).
  2. Maquet, P., et al. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method. Brain Res. 513 (1), 136-143 (1990).
  3. Buchsbaum, M. S., et al. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sci. 45 (15), 1349-1356 (1989).
  4. Kennedy, C. Local cerebral glucose utilization in non-rapid eye movement sleep. Nature. 297 (5864), 325-327 (1982).
  5. Pappenheimer, J. R., Koski, G., Fencl, V., Karnovsky, M. L., Krueger, J. Extraction of sleep-promoting factor S from cerebrospinal fluid and from brains of sleep-deprived animals. J. Neurophysiol. 38 (6), 1299-1311 (1975).
  6. Borbely, A. A., Achermann, P., Kryger, M. H., Roth, T., Dement, W. C. Sleep homeostasis and models of sleep regulation. Principles and Practice of Sleep Medicine. , 377-390 (2004).
  7. Destexhe, A., Contreras, D., Steriade, M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci. 19 (11), 4595-4608 (1999).
  8. Astrup, J., Sorensen, P. M., Sorensen, H. R. Oxygen and glucose consumption related to Na+-K+ transport in canine brain. Stroke. 12 (6), 726-730 (1981).
  9. Arenkiel, B. R., et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron. 54 (2), 205-218 (2007).
  10. Mateo, C. In Vivo Optogenetic Stimulation of Neocortical Excitatory Neurons Drives Brain-State-Dependent. Curr. Biol. , (2011).
  11. Wisor, J. P., Clegern, W. C. Quantification of short-term slow wave sleep homeostasis and its disruption by minocycline in the laboratory mouse. Neurosci. Lett. 490 (3), 165-169 (2011).
  12. El Yacoubi, M., et al. Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. Proc. Natl. Acad. Sci. U.S.A. 100 (10), 6227-6232 (2003).
  13. Tsunematsu, T., et al. Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J. Neurosci. 31 (29), 10529-10539 (2011).
  14. Le, S., Gruner, J. A., Mathiasen, J. R., Marino, M. J., Schaffhauser, H. Correlation between ex vivo receptor occupancy and wake-promoting activity of selective H3 receptor antagonists. J. Pharmacol. Exp. Ther. 325 (3), 902-909 (2008).
  15. Burmeister, J. J., Palmer, M., Gerhardt, G. A. L-lactate measures in brain tissue with ceramic-based multisite microelectrodes. Biosens. Bioelectron. 20 (9), 1772-1779 (2005).
  16. Cardin, J. A. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5 (2), 247-254 (2010).
  17. Destexhe, A., Contreras, D., Steriade, M. Cortically-induced coherence of a thalamic-generated oscillation. Neurociência. 92 (2), 427-443 (1999).
  18. Liu, Z. W., Faraguna, U., Cirelli, C., Tononi, G., Gao, X. B. Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. J. Neurosci. 30 (25), 8671-8675 (2010).
  19. Iwai, Y., Honda, S., Ozeki, H., Hashimoto, M., Hirase, H. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci. Res. 70 (1), 124-127 (2011).

Play Video

Citar este artigo
Clegern, W. C., Moore, M. E., Schmidt, M. A., Wisor, J. Simultaneous Electroencephalography, Real-time Measurement of Lactate Concentration and Optogenetic Manipulation of Neuronal Activity in the Rodent Cerebral Cortex. J. Vis. Exp. (70), e4328, doi:10.3791/4328 (2012).

View Video