Este nuevo método permite la grabación simultánea intracelular de una motoneuron adulto solo ratón y la medición de la fuerza producida por sus fibras musculares. La investigación combinada de las propiedades eléctricas y mecánicas de las unidades motoras en los animales normales y genéticamente modificadas es un gran avance para el estudio del sistema neuromuscular.
La motoneurona espinal ha sido durante mucho tiempo un buen sistema modelo para el estudio de la función neural, ya que es una neurona del sistema nervioso central con las propiedades únicas de (1) con objetivos fácilmente identificables (las fibras musculares) y por lo tanto tiene una función muy conocida (para controlar la contracción muscular), (2) ser el objetivo convergente de muchas redes espinales y descendente, de ahí el nombre de "vía final común", y (3) que tiene una gran soma que hace posible penetrar en ellos con afilados electrodos intracelulares . Además, cuando se estudió in vivo, es posible registrar simultáneamente la actividad eléctrica de las neuronas motoras y la fuerza desarrollada por sus objetivos musculares. Realización de grabaciones intracelulares de las neuronas motoras en vivo por lo tanto poner el experimentador en la posición única de ser capaz de estudiar, al mismo tiempo, todos los compartimentos de la "unidad de motor" (el nombre dado a la motoneurona, su axón, ylas fibras musculares que inerva 1): los insumos que inciden en la motoneurona, las propiedades electrofisiológicas de las neuronas motoras, y el impacto de estas propiedades de la función fisiológica de las neuronas motoras, es decir, la fuerza producida por su unidad de motor. Sin embargo, este enfoque es muy difícil porque la preparación no puede ser paralizada y por lo tanto la estabilidad mecánica para el registro intracelular se reduce. Así, este tipo de experimentos sólo se ha logrado en los gatos y en ratas. Sin embargo, el estudio de los sistemas motores espinales podría dar un salto formidable si era posible llevar a cabo experimentos similares en ratones normales y genéticamente modificados.
Por razones técnicas, el estudio de las redes espinal en ratones se ha limitado principalmente a recién nacidos pt preparaciones in vitro, donde las neuronas motoras espinales y las redes son inmaduros, las motoneuronas son separados de sus objetivos, y cuando se estudió en rodajas, el motoneurons se separan de la mayoría de sus entradas. Hasta hace poco, sólo algunos grupos habían logrado realizar grabaciones intracelulares de las neuronas motoras en vivo 2-4, incluyendo nuestro equipo, que publicó una nueva preparación que nos ha permitido obtener grabaciones muy estables de las motoneuronas in vivo en ratones adultos 5,6. Sin embargo, estos registros se obtuvieron en animales paralizados, es decir, sin la posibilidad de grabar la salida de la fuerza de estas motoneuronas. A continuación les presentamos una extensión de esta preparación original en el que hemos sido capaces de obtener grabaciones simultáneas de las propiedades electrofisiológicas de las neuronas motoras y de la fuerza desarrollada por su unidad de motor. Este es un logro importante, ya que nos permite identificar los diferentes tipos de neuronas motoras en base a su perfil de la fuerza, y revelando así su función. Junto con los modelos genéticos perturbar circuitos espinal segmentaria 7-9, o reproducting humano enferme10,11 sí, esperamos que esta técnica es una herramienta esencial para el estudio del sistema motor espinal.
La preparación se describe aquí es el primero que permite, en el ratón adulto, la grabación simultánea intracelular de una motoneuron lumbar y la medición de la fuerza producida por las fibras musculares inervadas por su axón.
Debido al pequeño tamaño del animal, las habilidades quirúrgicas requeridas para esta preparación puede ser difícil de adquirir. Sin embargo, una vez que esas habilidades se dominan, toda la cirugía se puede realizar en tres horas, y los animales pueden so…
The authors have nothing to disclose.
Este trabajo ha sido posible gracias al apoyo financiero de la Fondation pour la Recherche Médicale (FRM), la Beca Postdoctoral Milton Safenowitz Investigación de la ELA (ALS Association), NIH NINDS subvenciones NS05462 y NS034382 y ANR subvención HyperMND.
Name of the reagent | Company | Catalogue number | Comments (optional) |
Atropine sulfate | Aguettant | ||
Methylprenidsolone | Pfizer | Solu-Medrol | |
Sodium pentobarbitone | Sanofi-Aventis | Pentobarbital | |
Ketamine | |||
Xylazine | |||
Glucose | |||
Plasma expander | Roger Bellon | Plasmagel | |
Blunt scissors | FST | 14079-10 | |
Blunt fine scissors | FST | 15025-10 | |
Vannas Spring Scissors | FST | 15002-08 | |
Fine forceps serrated | FST | 11370-32 | |
Fine forceps serrated | FST | 11370-31 | |
Cunningham Spinal Adaptor | Stoelting Co. | ||
Kwik-Cast sealant | WPI | #KWIK-CAST | |
Ventilator | CWE Inc | SAR-830/AP | |
Capnograph | CWE Inc | μcapstar | |
Heating blanket | Harvard Apparatus | 507221F | |
Intracellular amplifier | Axon Instruments | Axoclamp 2B | |
Pipette puller | Sutter Instruments | P-97 | |
KCl | Sigma-Aldrich | P9333-500G |