Summary

来自祖,人脑少突胶质细胞培养系统

Published: December 20, 2012
doi:

Summary

小学,人类胎儿脑源性,多能祖细胞增殖<em在体外</em同时保持分化成神经元和星形胶质细胞的能力。这项工作表明,通过调节选择生长因子,神经前体细胞可以被诱导分化阶段的少突胶质谱系。

Abstract

人类神经祖细胞分化成神经元和神经胶质细胞类型进行研究和比较分子调控神经细胞谱系的发展提供了一种模式。从胎儿中枢神经系统组织的神经前体细胞在体外扩增得到很好的特点。尽管成人皮层下白质和发展各种文化条件成髓磷脂生产的少突胶质细胞,少突胶质细胞在体外实验获得足够的人力胎儿神经祖细胞的定向分化的神经胶质祖细胞的识别和分离仍然存在困难。分化的半乳糖脑苷脂+(GALC)和O4 +少突胶质前体细胞或祖细胞神经前体细胞(OPC)从已报道使用第二孕期胎儿的大脑。然而,这些细胞不支持包括星形胶质细胞和神经元的细胞增殖的情况下,都将丢失迅速随着时间的推移在培养。仍需要文化系统的少突胶质细胞谱系适合在体外实验中产生。

文化的初级人少突胶质细胞,例如,可以是一种有用的模型来研究发病机制中的嗜神经感染剂,如人多瘤病毒,JC病毒,即在体 ​​内感染这些细胞。这些培养细胞中也可以提供其他脱髓鞘疾病的中枢神经系统(CNS)的模型。小学,人类胎儿脑源性,多能神经祖细胞在体外增殖的能力,同时保持分化成神经元祖细胞源性神经元,(PDN)和星形胶质细胞(祖衍生的星形胶质细胞,PDA)的研究表明,神经祖细胞可诱导少突胶质谱系发展的阶段,许多(祖衍生的少突胶质细胞,PDO)区分。我们的文化神经祖细胞在DMEM-F12无血清培养基支持中执行与碱性成纤维细胞生长因子碱性成纤维细胞生长因子(bFGF),血小板衍生生长因子(PDGF-AA),刺猬(嘘),神经营养因子3(NT-3),N-2和三碘甲状腺原氨酸(T3)。 2.5e6细胞每75厘米瓶中大约每7天传代培养的细胞。使用这些条件,在培养的细胞的大部分保持形态,其特征在于由几道工序和明文预少突胶质细胞的标记物,如A2B5和O-4。当我们删除的四个生长因子(GF),碱性成纤维细胞生长因子(bFGF,PDGF-AA,嘘,NT-3)和空调媒体PDN,细胞开始获得更多的流程和快速的特定标志物,如GALC和髓鞘少突胶质细胞分化碱性蛋白(MBP)。我们进行了表型特征,使用多色流式细胞仪识别少突胶质细胞的特有标志。

Protocol

注:对于常规的培养的神经祖细胞和少突胶质谱系细胞,孵化完成,在37℃下,在湿润的5%CO 2气氛中。每2天,将培养基更换使用50〜100%的新鲜培养基,如果文化是40-70%汇合。在附近汇合的时间,培养传代在2-2.5e6/T75烧瓶通常在每周计划。 1。准备涂层瓶为了制备涂覆的烧瓶在100毫升去离子水(DI水),然后涂层的T75烧瓶中稀释5毫克的聚-D-赖氨?…

Representative Results

这是非常重要的,从70%-80%汇合的神经前体细胞培养物( 图1A)启动的分化过程。许多细胞就会死亡后改变培养基从祖寡介质的,因为它包含了特殊的生长因子。这表明,没有承诺的少突胶质型神经祖细胞的增长将不支持新媒体( 图1B)。孵育在一个星期的培养基+ GF低聚导致在中间文化表现出窄的,双极的形态( 图1B)。将细胞保持在低聚培养基+ GF为3-4周…

Discussion

本协议描述了如何推导出胎儿主要的人类神经祖细胞和少突胶质细胞的表型的特征,同时使用流式细胞仪和免疫荧光染色。从胎儿中枢神经系统的神经祖细胞的扩张和增长已经非常好1-4。然而,获得足够的人力的少突胶质细胞, 在体外实验仍然很困难的,即使它是可能的识别和分离胶质前体从成人脑白质5-13。已经有不同的尝试各种文化条件下的发展产生少突胶质细胞14…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项研究是在美国国立卫生研究院,NINDS的院内研究计划。与显微镜的帮助和Pamela C.筛分帮助编辑,作者要感谢所有成员的实验室,分子医学,神经科学,里克·德赖弗斯。

Materials

Name of the reagent Company Catalogue number Final concentration
DME/HAMS F12 1:1 Omega Scientist DM-251 1X
Bovine Albumin Sigma A9418 1%
Gentamicin Quality Biologicals 120-098-031 50 μg/ml
L-Glutamine Quality Biologicals 118-084-061 2 mM
T3 Sigma T2877 3 nM
N2 Components Gibco BRL 17502 1:100
NT-3 PeproTech Inc 450-03 2 ng/ml
Shh R&D System 1314-SH/CF 2 ng/ml
bFGF PeproTech Inc 100-18B 20 ng/ml
PDGF-AA PeproTech Inc 100-13A 10 ng/ml
PDL Sigma P6407 50 μg/m
PFA Electron Microscopy Sciences 15712 2%
Trypsin Quality Biologicals 118-087-721
Papain Worthington LK003178 20 U/ml
DNase vials Worthington LK003172 0.005%
EBSS Worthington LK003188
ProLong Gold
with DAPI
Invitrogen P36931

Table 1. Reagents.

Primary Abs(all at 1 μg/ml) Species Isotype Source Secondary Abs
Flow Cytometry
A2B5-Biotin Mouse IgM Gift J. Nielson Streptavidin PETR, Invitrogen, CA
O4FITC Mouse IgM Gift from J. Nielson
A2B5 Mouse IgM Millipore, MA gαm IgM-FITC, Invitrogen, CA
O4 Mouse IgM Millipore, MA gαm IgM-FITC, Invitrogen, CA
GalC Mouse IgG3 Millipore, MA gαm IgG3-PE, Southern Biotech, AL
MBP Chicken IgY Millipore, MA dαck IgY-AMCA, Jackson Immu., PA
Nestin Mouse IgG1 Messam et al. 200028 gαm IgG1-PECy5, Invitrogen, CA
GFAP Rabbit IgG Millipore, MA gαrb IgG-PE, Jackson Immu, PA
βIII tubulin Mouse IgG2 Covance, CA gαm IgG2a-PETR, Invitrogen, CA
Immunocytochemistry
βIII tubulin
(1:1,500)
Mouse IgG2a Covance, CA gαm IgG2a-FITC, Invitrogen, CA
(1:1,000)
GFAP
(1:1,000)
Rabbit IgG Millipore, MA gαrb IgG-FITC, Jackson Immu, PA
(1:500)
MBP
(1:50)
Chicken IgY Millipore, MA dαck IgY-FITC, Jackson Immu, PA
(1:100)
O4
(1:100)
Mouse IgM Millipore, MA gαm IgM-AF546, Invitrogen, CA
(1:100)
GalC
(1:10)
Rabbit IgG Millipore, MA gαm IgM-AF750, Invitrogen, CA
(1:100)

Table 2. Antibodies (Abs) used for flow cytometry and immunocytochemistry assays. Antibody conjugates: PE, phycoerythrin; PETR, phycoerythrin Texas Red; AMCA, amino-methyl-coumarin-acetate; Cy, cyanine; FITC, fluorescein isothiocyanate. Ig: immunoglobulin. AF: Alexa Fluor; gαm: goat anti-mouse; gαrb: goat anti-rabbit; dαck: donkey anti-chicken.

Referências

  1. Messam, C. A., Hou, J., Gronostajski, R. M., Major, E. O. Lineage pathway of human brain progenitor cells identified by JC virus susceptibility. Ann. Neurol. 53, 636-646 (2003).
  2. Vescovi, A. L., Reynolds, B. A., Fraser, D. D., Weiss, S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron. 11, 951-966 (1993).
  3. Johe, K. K., Hazel, T. G., Muller, T., Dugich-Djordjevic, M. M., McKay, R. D. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10, 3129-3140 (1996).
  4. McKay, R. Stem cells in the central nervous system. Science. 276, 66-71 (1997).
  5. Belachew, S., et al. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J. Cell Biol. 161, 169-186 (2003).
  6. Almazan, G., McKay, R. An oligodendrocyte precursor cell line from rat optic nerve. Brain Res. 579, 234-245 (1992).
  7. Filipovic, R., Zecevic, N. Neuroprotective role of minocycline in co-cultures of human fetal neurons and microglia. Exp. Neurol. 211, 41-51 (2008).
  8. Goldman, S. A., Natesan, S. A niche-defying feat: induced oligoneogenesis in the adult dentate gyrus. Cell Stem Cell. 3, 125-126 (2008).
  9. Nunes, M. C., et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med. 9, 439-447 (2003).
  10. Lyssiotis, C. A., et al. Inhibition of histone deacetylase activity induces developmental plasticity in oligodendrocyte precursor cells. Proc. Natl. Acad. Sci. U.S.A. 104, 14982-14987 (2007).
  11. Sim, F. J., Goldman, S. A. White matter progenitor cells reside in an oligodendrogenic niche. Ernst Schering Res. Found Workshop. , 61-81 (2005).
  12. Raff, M. C., Miller, R. H., Noble, M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature. 303, 390-396 (1983).
  13. Windrem, M. S., et al. Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. J. Neurosci. Res. 69, 966-975 (2002).
  14. Chen, Y., et al. Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat. Protoc. 2, 1044-1051 (2007).
  15. Armstrong, R. C. Isolation and characterization of immature oligodendrocyte lineage cells. Methods. 16, 282-292 (1998).
  16. Hu, B. Y., Du, Z. W., Li, X. J., Ayala, M., Zhang, S. C. Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development. 136, 1443-1452 (2009).
  17. Gard, A. L., Williams, W. C., Burrell, M. R. Oligodendroblasts distinguished from O-2A glial progenitors by surface phenotype (O4+GalC-) and response to cytokines using signal transducer LIFR beta. Dev. Biol. 167, 596-608 (1995).
  18. Hu, B. Y., Du, Z. W., Zhang, S. C. Differentiation of human oligodendrocytes from pluripotent stem cells. Nat. Protoc. 4, 1614-1622 (2009).
  19. Reubinoff, B. E., et al. Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19, 1134-1140 (2001).
  20. Pfeiffer, S. E., Warrington, A. E., Bansal, R. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 3, 191-197 (1993).
  21. Zhang, S. C., Ge, B., Duncan, I. D. Tracing human oligodendroglial development in vitro. J. Neurosci. Res. 59, 421-429 (2000).
  22. Bradl, M., Lassmann, H. Oligodendrocytes: biology and pathology. Acta Neuropathol. 119, 37-53 (2010).
  23. Chong, S. Y., Chan, J. R. Tapping into the glial reservoir: cells committed to remaining uncommitted. J. Cell Biol. 188, 305-312 (2010).
  24. Jakovcevski, I., Filipovic, R., Mo, Z., Rakic, S., Zecevic, N. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat. 3, 5 (2009).
  25. Rao, R. C., Boyd, J., Padmanabhan, R., Chenoweth, J. G., McKay, R. D. Efficient serum-free derivation of oligodendrocyte precursors from neural stem cell-enriched cultures. Stem Cells. 27, 116-125 (2009).
  26. D’Intino, G., et al. Triiodothyronine administration ameliorates the demyelination/remyelination ratio in a non-human primate model of multiple sclerosis by correcting tissue hypothyroidism. J. Neuroendocrinol. 23, 778-790 (2011).
  27. Cui, Q. L., et al. Human fetal oligodendrocyte progenitor cells from different gestational stages exhibit substantially different potential to myelinate. Stem Cells Dev. , (2012).
  28. Messam, C. A., Hou, J., Major, E. O. Coexpression of nestin in neural and glial cells in the developing human CNS defined by a human-specific anti-nestin antibody. Exp. Neurol. 161, 585-596 (2000).

Play Video

Citar este artigo
Monaco, M. C. G., Maric, D., Bandeian, A., Leibovitch, E., Yang, W., Major, E. O. Progenitor-derived Oligodendrocyte Culture System from Human Fetal Brain. J. Vis. Exp. (70), e4274, doi:10.3791/4274 (2012).

View Video